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ABSTRACT 
Computers are now seriously at risk from a new type of 

assaults called software cache-based side channel attacks. 

Cache-based side channel attacks, in contrast to physical 

side channel attacks, which primarily target embedded 

cryptographic equipment, can also mine general purpose 

computers. The attacks don't need specialised equipment or 

a lot of computing power, are simple to perform, and work 

on most systems. An unprivileged user programme using 

simple timing analyses based on cache misses can recover 

the whole key in attacks recently proven against software 

versions of cyphers like AES and RSA. In our initial 

analysis of these attacks, we pinpoint cache interference as 

their primary cause. We distinguish between two 

fundamental mitigation strategies: the partition-based 

strategy eliminates cache interference, whereas the 

randomization-based strategy randomises cache 

interference so that no information can be deduced. The 

Partition-Locked cache (PLcache) and Random 

Permutation cache (RPcache), two new security-conscious 

cache designs, are presented. Its security is examined and 

proven, and their performance is assessed. Our findings 

demonstrate that, with very little performance loss and 

hardware expense, our new cache designs with built-in 

security can protect against cache-based side channel 

attacks generally rather than only specialised attacks on a 

given cryptographic algorithm.  

 

Categories and Subject Descriptors 
C.1 [Processor Architectures]: Miscellaneous; 
K.6.5 [Management of Computing and Information Systems]: 

Security and Protection 

General Terms: Security, Design, Performance 

Keywords: Cache, Side channel, Computer architecture, Se- 

curity, Processor, Timing attacks 
 

 

1. INTRODUCTION 
Protecting the confidentiality of secret or sensitive informa- 

tion is a major concern for users of computer systems. This 

is often done by using cryptographic methods, so that even 

if the adversary gets hold of the data, it is encrypted and he 

cannot interpret it – unless he can get hold of, or discover, 

the key. Strong cryptography is designed so that it is com- 

putationally infeasible to infer the key bits by brute-force 

trials, or even by differential cryptanalysis [1] and linear 

cryptanalysis [2]. However, rather than use sophisticated 

mathematical analysis, side-channel attacks use auxiliary 

information to deduce key bits. They collect “side channel 

information”, which can be in the form of timing, power 

consumption, radiation or sound produced by the system 

[3]. This often carries information about the cryptographic 

keys. For example, in a differential power analysis attack 

[4], a bit of secret key information can be discovered by 

detecting which branch is executed upon a key-dependent 

conditional branch, because the device does different things 

depending on which branch is actually executed, consum- 

ing different amounts of power. 

Side channel attacks have mostly been used in attacking 

simple systems such as smart cards, due to the noisy nature 

of the side channel information, the difficulty in collecting 

such information and the need for physical access or prox- 

imity. In attacking more complicated general-purpose com- 

puter systems, more traditional attacks are used, e.g., ex- 

ploiting flaws in operating systems that allow an attacker to 

gain direct access to the secrets or even subvert the entire 

system. 

Unlike physical side channel attacks, software cache- 

based side channel attacks can impact a much wider spec- 

trum of systems and users. This is because caches exist in 

almost all modern processors, the software attacks are very 

easy to perform, and are effective on various platforms [5- 

7]. This makes cache-based side channel attacks extremely 

attractive as a new weapon in the attacker‟s arsenal. Also, 

existing mitigation methods for side channel attacks are all 

ad hoc and only defend against specific attacks. No past 

work has proposed general solutions as we do in this paper. 

We propose cost-effective solutions that address cache- 

based side channel attacks in general, by eliminating the 

root cause of these attacks. Our main contributions are: 
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 An analysis of cache-based side channel attacks, 

identifying cache interference as the root cause 

that enables these attacks. 
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 Identification of two main mitigation approaches: the 

partition-based solutions and the randomization- 

based solutions. 

 Detailed proposal of new security-aware cache archi- 

tectures for each mitigation approach. 

 Analysis of these new cache architectures and an in- 

formation-theoretic proof of security. 

 Performance evaluation of the proposed architec- 

tures using cycle-accurate simulation. 

In section 2, we define our threat model and analyze dif- 

ferent types of cache-based side channel attacks, showing 

how and why they work. In section 3, we discuss software 

solutions and hardware solutions that have been proposed, 

and their problems. In section 4, we propose two new gen- 

eral-purpose hardware solutions: the Partition Locked 

cache (PLcache) and the Random Permutation cache 

(RPcache). In section 5, we evaluate the proposed designs 

in terms of security and performance. In section 6 we re- 

view past work, and we conclude in section 7. 

 

2. THREAT MODEL AND ATTACKS 
 Threat Model and Assumptions 
The goal of the adversary is to learn information that he has 

no legitimate access to, e.g., the classified data or secret 

keys. The attacker needs very little capability to mount a 

cache side channel attack. An adversary is one or multiple 

unprivileged user processes, including a remote client that 

can interact with the server where the secrets are stored. 

The adversary has no administrator privilege. We assume 

that the adversary does not exploit physical attacks like bus 

and memory probing, since he typically does not have 

physical access to the victim machine and such ability is 

not necessary for cache-based side channel attacks. The 

adversary can achieve his goal without the need for finding 

and exploiting system flaws, but rather just acts like a nor- 

mal process, performing legitimate operations. We further 

assume that the victim and the adversary are “isolated” 

processes that do not share the same address space, since 

this always gives the adversary the ability to infer informa- 

tion about the victim‟s behavior. 

Many different types of cache side channel attacks are 

possible. We group them based on the attacker‟s ability to 

observe cache accesses of the victim process. The attacker 

may be able to directly detect each individual access of the 

victim. Alternatively, he may only be able to take a snap- 

shot of the cache in a certain time period and see several 

accesses without knowing their order. Sometimes, he can- 

not observe any cache access, and can only measure the 

overall execution time of the victim process. 

 Percival’s Attack on RSA 
Modern microprocessors, such as Simultaneous Multi- 

Threading (SMT) processors, allow multiple threads to run 

simultaneously, sharing part of the cache subsystem. This 

gives an attacker process the ability to directly observe 

other concurrent threads‟ cache accesses and obtain a rela- 

tively accurate trace. In 2005, Percival [6] demonstrated an 

attack against the popular OpenSSL implementation of the 

RSA algorithm using this approach. 

Attack description: The attacker manages to run simul- 

taneously with the victim process which is performing RSA 

encryption. His goal is to discover bits of the private en- 

cryption key used by the victim. The attacker sequentially 

and repeatedly accesses an array, thus loading in his own 

data to occupy all cache lines; at the same time he measures 

the delay for each access to detect cache misses, e.g., using 

the rdtsc instructions to read a timer in Intel x86 proces- 

sors. The victim‟s cache accesses will evict the attacker‟s 

data, causing the attacker to miss on these cache lines, ena- 

bling detection by the attacker. 

Attack Analysis: The core operation used in RSA is 

modulo exponentiation. It is often implemented with a se- 

ries of squarings and multiplications. The encryption key is 

also divided into a series of segments. For each multiplica- 

tion, a multiplier is selected from a set of pre-computed 

constants stored in a table. During the table lookup, a seg- 

ment of the encryption key is used to index the table. As the 

table is stored in memory, the attacker can detect the cache 

evictions caused by the victim (the encrypting process) for 

the table lookup. Based on which line is evicted, the at- 

tacker can infer which table entry is accessed. This tells the 

attacker the index used for this table lookup, which is a 

segment of the encryption key. 

 Bernstein’s Attack on AES 
In Bernstein‟s attack [5], the attacker has no direct observa- 

tion of the victim process‟ cache accesses. He may be on 

another machine, performing the attack remotely. He can 

only observe the total execution time of a program. 

Attack description: The victim is a software module that 

can perform AES encryption. The module is a “black box”; 

the user is only able to choose the input to the AES soft- 

ware module and measure how long it takes to complete the 

encryption. The user may be a process in the same machine 

or a remote user requesting encryption service. Empirical 

studies show that for most software AES implementations 

running on modern microprocessors, the execution time of 

an encryption is input-dependent and can be exploited to 

recover the secret encryption key. The attack consists of 

three steps: 

1. Learning phase: Let the victim use a known key K. The 

attacker generates a large number, N, of random plain- 

texts P. He sends the plaintexts to the cipher program 

and records the encryption time for each plaintext. He 

uses the algorithm shown in Figure 1 to obtain the tim- 

ing characteristics for K, shown in Figure 2(a). 

2. Attacking phase: Repeat step 1 except that an unknown 

key K’ is used. The timing characteristics for K’ is 

shown in Figure 2(b). Note that the input set is ran- 

domly generated and not necessarily the same as that 

used in step1. 
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Figure 1. (a) Timing characteristic generation (b) Key-byte searching algorithm 
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Figure 2. Timing characteristic charts for byte 0 (obtained on a Pentium-M machine) 

3. Key recovery: Given the two sets of timing characteris- 

tics, use the correlation algorithm shown in Figure 1(b) 

to recover the unknown key K’. 

In Figure 2, the height of the bar at position j is tavg
i
(j,K), 

which is the average of the execution time of the AES en- 

that there are always other memory accesses that regularly 

contend for cache lines at some fixed locations. Therefore, 

given an index (piki), if the corresponding table entry is 

mapped into one of these “hot” cache locations, the table 

lookup will experience a cache miss, and will lead to larger 
t 

i
(p , K), i.e., a high bar in Figure 2. Also, when p’  k’ 

cryptions when the i-th byte of plaintext P is j, using key K. 

In the AES algorithm, each plaintext P is an M-byte block, 

e.g., M=16, therefore M pairs of such timing characteristic 

charts are generated. Figure 2 only shows one such pair, 

corresponding to byte 0 in P. Experiments show that 

t 
i
(j,K) is pretty much fixed for a given system configura- 

tion. Furthermore, it is found that when a different key K’ is 

used, the timing charts roughly remain the same except that 

the locations of the bars in the charts are permuted, as 

shown in Figure 2. More specifically, the following equa- 

tion holds: 
t   

i
(p , K) = t   

i
(p’ , K’) if p’  k’ = p  k      (1) 

avg      i i i 

= pi  ki the table lookup will access the same table entry, 

i.e., the same cache location. This explains why the same 

bar in Figure 2(a) also appears in Figure 2(b), though at 

different location, as described by equation (1). 

The two representative attacks analyzed above corre- 

spond to two extremes in the attacker‟s ability to observe 

cache interference. There are also other attacks reported [8], 

where the attacker has an observation ability between these 

extremes. Despite the dramatic difference in these attacks, 

they all rely, directly or indirectly, on cache interference. In 

attacks like Percival‟s attack, external interference is ex- 
avg i avg i i i i i ploited by a process outside the victim program. The vic- 

where  is the bit-wise XOR operation, and ki and k’i are 

the i-th byte of K and K’ respectively. 

Attack Analysis: Table lookups are intensively used in 

various AES implementations for high performance. For 

example, OpenSSL v0.9.7a uses five tables. During the 

encryption, for each byte pi of the plaintext, one table is 

accessed using the index (piki) where ki is the i-th byte of 

the encryption key. Ideally, these table lookups will hit in 

the cache since normally the cache is large enough to ac- 

commodate all these tables. However, in reality it is found 

tim‟s cache accesses evict the attacker‟s cache lines and 

therefore can be observed. In Bernstein‟s attack, internal 

interference, coming from the victim code module itself, 

occurs. The cache line evictions of AES table entries are 

caused by another part of the software module (e.g., the 

wrapper code for the AES encryption core) and even the 

encryption code itself. These two types of cache interfer- 

ence are not a result of any specific cache architectures. 

They are rather general and almost all microprocessors with 

caches are vulnerable to such attacks. 

For i = 0 to 15 do begin 

For j = 0 to 255 do begin 

Corr[ j]  
255 

t  (m, K )  t  (m  j, K ')i i 

avg avg 

m  0 

end; 
ki’= findMax(Corr); 

end; 
 

Note: Function findMax() searches for the 

maximum value in the input array and returns 

its index. 

For key K: 

For s = 1 to N do begin 
Generate a random 128-bit Plaintext block, Ps; 

Ts = time taken for AES encryption of Ps using K; 

end; 
For i = 0 to 15 do begin 

For j = 0 to 255 do begin 
count = 0; 

For s = 1 to N do begin 
If pi = j then 

TSUMi(j) = TSUMi(j) + Ts; 
count = count+1; 

end; 
tavg

i(j,K) = TSUMi(j)/count; 

end; 

end; 
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3. EXISTING SOLUTIONS 
 Software Solutions 
Most existing solutions for cache-based side channel at- 

tacks are software based and specific to a given encryption 

algorithm. The basic methodology is to rewrite the software 

in a way that the known attacks can not succeed. For exam- 

ple, to mitigate the attacks against AES, several new im- 

plementations have been proposed, e.g. 1) pre-load the AES 

tables into the cache before starting an encryption so that 

all accesses to AES tables hit in the cache and hence have 

constant encryption time; or 2) do not use table lookups at 

all in the AES implementation – use only mathematical 

operations instead. More proposals can be found in [7][9]. 

To mitigate attacks against RSA, one proposal changes the 

pre-computed multiplier table such that to access any mul- 

tiplier, all cache lines in the table are touched. The attacker 

always observes a fixed cache access pattern and can not 

guess the key bits. 

One problem with these software solutions is that they 

are all ad hoc and attack specific. They are tailored to a 

given program (which has to be changed) and only mitigate 

the known attacks. New attacks are still possible as the un- 

derlying cache interference still exists. A second problem is 

that the software solutions often cause significant perform- 

ance degradation. The new software implementations of 

AES are 2X to 4X slower than the original insecure imple- 

mentation [9]. A third problem is that some software solu- 

tions rely on specific hardware architecture parameters. For 

example, the new RSA implementation above needs to be 

rewritten if the cache line size changes. This is undesirable 

for software portability. Finally, some software counter- 

measures have been proved not sufficient. For example, 

pre-loading AES tables before encryption indeed can not 

ensure constant encryption time. The table entries can still 

be evicted after the tables are loaded and before or during 

the encryption. 

 Hardware Solutions 
Hardware solutions proposed include conceptual ones [7] 

which disable the cache or use separate caches for simulta- 

neous threads. Some new eviction strategies which mini- 

mize the extent to which one thread can evict data used by 

another thread were suggested in [6]. In [18], Page pro- 

posed to exploit a partitioned cache originally designed for 

multimedia applications to block cache-based side channel 

attacks. The ISA is changed to make the cache a visible 

part of the architecture, with new instructions that can de- 

fine a partition and specify its size and other parameters, 

the cache line size, the stride size, etc. However, the author 

also admitted that the cost of the design and its perform- 

ance impact can be high. 

 

4. NEW HARDWARE SOLUTIONS 
Unlike the software solutions that are ad hoc and attack 

specific, our work attempts to eliminate the root cause of 

the problem for cache side channel attacks in general. We 

also aim at designs that can leverage existing cache features 

as much as possible, introducing low cost changes only 

when necessary. We feel this is necessary to encourage 

rapid and widespread deployment. Our results show that 

with little hardware cost, this goal can be achieved without 

impacting performance. Section 2 showed that cache inter- 

ference is the root cause for cache-based side channel at- 

tacks. To block these attacks, we can try to eliminate cache 

interference, i.e., prevent inference of cache line evictions. 

We identify two main solution approaches. One class of 

solutions essentially partitions the cache, so that there is no 

sharing of cache lines, and hence no interference. The other 

approach allows sharing, but randomizes the cache interfer- 

ence, so that no useful information can be deduced. We 

describe an efficient hardware solution for each approach. 

 Partition-Locked Cache (PLcache) 
The concept of cache partitioning is not new, as described 

in section 3. However, in previous designs, the partitions 

are mostly static. This prevents sharing, often leading to 

large performance degradation. A process may use very 

few cache lines in its partition, but unused lines are not 

available to other processes which may need more cache 

lines than they have in their partitions. We refer to such a 

cache as a statically partitioned cache, or a partitioned 

cache in short. In this paper, we propose the Partition- 

Locked cache (PLcache) that essentially achieves the effect 

of cache partitioning, but much more flexibly with less per- 

formance degradation. In PLcache, the cache lines of inter- 

est are locked in cache, creating a flexible “private parti- 

tion”; these cache lines can not be evicted by other cache 

accesses not belonging to this private partition, preventing 

internal, as well as external, cache interference. 

 Architecture Description 
The PLcache consists of two parts: the hardware addition to 

the cache and the system interface for controlling which 

cache lines should be locked. 

A. Hardware addition: Figure 3 shows the hardware addi- 

tion to the cache, consisting of two new tags, L and ID, per 

cache line. The 1-bit L flag indicates whether this cache 

line is locked or not. The ID field indicates the owner of the 

cache line. Not shown in Figure 3, is an optional LL bit per 

TLB entry, page-table entry or segment descriptor (if the 

architecture supports segmentation) which indicates if an 

access to a page or a segment should cause the correspond- 

ing cache line to be locked in cache. 

 
 

L ID Original cache line 

Figure 3. A cache line of the PLcache 

 
B. Control Interface: There are two mechanisms that allow 

the programmer, compiler and OS to control what to lock in 

the cache. Either mechanism can be implemented: 
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Table 1: ISA extension for PLcache 
Name Description 

 

ld.lock/ 
ld.unlock 

Identical to a normal load instruction with the 

additional action: If the memory access hits in the 

cache or causes a cache line to be fetched into the 
cache, the L bit of the cache line is set/cleared. 

 

st.lock/ 
st.unlock 

Identical to a normal store instruction with the 

additional action: If the memory access hits in the 

cache or causes a cache line to be fetched into the 
cache, the L bit of the cache line is set/cleared. 

Table 2: API calls for PLcache 
 
 
 

 
 
 

1) ISA extension: a new set of load/store instructions 

with a lock/unlock sub-op can be added to the base 

ISA (Instruction Set Architecture). This gives the pro- 

grammer or compiler the fine-grain control on what 

data to lock. Table 1 describes the new load/store in- 

structions. 

2) Segment/Page-based protection: Regions of memory, 

e.g., those containing AES and RSA tables, can be 

marked as LOCKED. Accesses to such regions of 

memory should cause the corresponding cache line to 

be locked. This uses the LL bit described above, added 

to the segment descriptor and the TLB entry. This in- 

terface gives the operating system an opportunity to 

control what data should be locked in the cache. Table 

2 shows API calls that can be exposed to programmers 

to make use of this mechanism. To lock a memory re- 

gion, the function lock_mem_region() can be called 

which returns a region id. The LL bit of the corre- 

sponding segment is set. To unlock a region, the func- 

tion unlock_mem_region() can be called with the id of 

the region to be unlocked as the input argument. The 

LL bit of the corresponding segment is cleared, and the 

locked cache lines invalidated. 

C. Cache access handling: Figure 4 shows the flow chart of 

an access to a PLcache. Note that the sequential steps 

shown in the flow chart do not necessarily execute sequen- 

tially in the hardware. The cache hit handling procedure is 

the same as in traditional caches except that the L bit of the 

cache line accessed needs to be updated if necessary. If the 

access is a load/store instruction with lock/unlock sub-op, 

the instruction itself determines if the L bit should be set or 

cleared. This information is available early in the pipeline 

(after the instruction decoding stage) and hence does not 

impact cache access time. If the LL bit in segment descrip- 

tors is implemented, its checking can be done together with 

the checking of existing protection bits, and no extra delay 

is added. Similarly, if the LL bit in the TLB entry is im- 

plemented, the check can be done together with that for 

existing protection bits during the TLB access. 

 

Figure 4. Access handling procedure for PLcache 

During a cache miss, the replacement algorithm differs 

from a traditional cache because of the Locked cache lines. 

Let R denote the line chosen to be evicted by the normal 

cache replacement algorithm (e.g., LRU) and D denote the 

new data block that is being fetched into the cache. The 

following cases need to be considered: 
 

Case Description 

1 If D does not need to be locked and R is also not locked, 
D replaces R like in a normal cache miss. 

2 If D does not need to be locked but R is a locked line, D 

can not replace R. In this case, for a load instruction, 

one can simply return D to the processor execution core. 

For a store instruction, the data is written back to the 

next level of memory, without replacing R. The LRU 

list should be updated so that R becomes the most re- 

cently used line and will not be chosen for eviction next 

time. This can avoid repeatedly missing on this cache 
set due to the locked line. 

3 If D needs to be locked in the cache, it is allowed to 

replace any line that is not locked or any locked line that 

belongs to the same process. We do not allow the new 

line to evict a locked line of another process. Such a 
miss can be handled as described in case 2. 

D. Updating the L bit of a cache line: If the ISA extension 

is implemented, the instructions with locking/unlocking 

capability can set or clear the bits whereas normal load and 

store instructions can not. If the segment/page based protec- 

tion is implemented, in each memory access the address is 

checked and the L bit is set or cleared accordingly. If both 

mechanisms are implemented, locking/unlocking instruc- 

tions always set/clear the L bit, and a normal load/store 

instruction can also set the L bit if the address is in a locked 

memory region. 

 Discussion 
ISA extension vs. segment/page-based protection: The ISA 

extension gives the software developer the flexibility to 

prevent cache interference for any portion of its memory. 

Legacy code however can not benefit without modification. 

The segment/page based protection provides a rather 

coarse-grain control mechanism – but both future code and 

Declaration 

int lock_mem_region 
(unsigned long start_addr, unsigned long length); 

int unlock_mem_region(int region_id); 

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

175  

ID P 

 
Effective address 

 

 
 

 

 

 

 
 

new set bits 

Cache set array 
 

 

    
 

 

   

 
   

 

    
 

 
     

 

Figure 5. A logical view of the RPcache 
 

legacy code can benefit from it. For example, the pro- 

grammer can exploit the API calls to specify a memory 

region to be protected, and the OS can mark memory re- 

gions such as AES or RSA tables used by crypto libraries 

during load time. 

Controlling the use of locking mechanisms: The proper use 

of PLcache will not allow any program to lock cache lines 

without OS oversight. Otherwise, a process may, mali- 

ciously or naively, lock excessive amounts of data in the 

cache, causing a security or fairness problem, respectively. 

An adversary can also selectively lock certain lines to inter- 

fere with other processes. In PLcache, the hardware only 

provides the locking mechanisms, and the software should 

ensure their proper use. For example, the programmer and 

compiler can specify and optimize what to lock, and the OS 

determines if the lock is allowed based on the security pol- 

icy. This might allow only trusted processes to lock cache 

lines and might impose an upper bound on the number of 

cache lines that a process can lock. For our segment/page- 

based PLcache mechanism, the OS can make this decision 

during the API call for locking a memory region, denying 

this service when necessary. For our ISA-based PLcache 

mechanism, the OS can disable the locking instructions, 

e.g., treating them as normal memory instructions without 

locking capability. This can be done, via a per-thread “dis- 

able locking” flag which is used to guard the L-bit update 

logic in the pipeline. 

Cache line ID management: Any hardware implemented 

field has a limit on the number of items that it can repre- 

sent. Hence, an n-bit ID field of a cache line limits the 

maximum number of processes that can own lines in the 

cache at any one time to 2
n
. This does not limit the total 

number of concurrent software processes that the OS can 

support. For example, non-critical processes that do not 

need to be isolated can share the same ID value, e.g., „0‟. 

 Random Permutation Cache (RPcache) 
We propose a Random Permutation Cache (RPcache) for 

the randomization-based approach. In contrast to the 

PLcache, this approach allows cache sharing, but random- 

izes the resulting interference, so that no useful information 

about which cache line was evicted can be inferred. 

An attacker can observe another process‟s cache access 

only if that process changes the attacker‟s cache usage, i.e., 

evicts the attacker‟s cache lines. If the process evicts its 

own cache lines, the attacker has no way to know that. As 

shown in section 2, by knowing which cache lines have 

been accessed by the victim process, the attacker can infer 

critical information about the victim process. In RPcache, 

each time such cache interference occurs, we randomize it 

such that the interference carries no useful information. 

Architecture Description: We assume a generic set- 

associative cache where M bits of the effective address, the 

set bits, are used to index the cache set array. The number 

of cache sets in the array is 2
M

 and each cache set contains 

N cache lines for an N-way set-associative cache, including 

direct-mapped caches where N=1. 

A. Permutation of memory-to-cache mapping 

A key operation that the RPcache performs is the permuta- 

tion of the memory-to-cache mapping. Conceptually, this is 

done by using a level of indirection in indexing the cache. 

In RPcache, the memory-to-cache mapping for a process is 

stored in a permutation table (PT), as shown in Figure 5. 

The table has the same number of entries as the number of 

cache sets, and each entry contains a different M-bit num- 

ber which indicates the new set. For each cache access, the 

PT is indexed with the M set bits of the effective address to 

obtain the new set bits, which are then used to index the 

cache set array. A complete randomization of the memory- 

to-cache mapping can be achieved by a random permuta- 

tion of the contents of the table entries. This can be decom- 

posed into a series of swap operations, each of which ex- 

changes the contents of two entries. Swapping the k-th and 

the i-th table entries means changing the memory-to-cache 

mapping, k  S and i  S‟, to the new mapping k  S‟ 

and i  S. This indirect indexing scheme is a logical de- 

scription. In hardware, this extra level of indirection is not 

necessary, as we show later. 

In the RPcache, a number of permutation tables are 

added and each table can be used by one or more processes 

to access the cache. For example, an encrypting process can 

use one table and all other non-critical processes use an- 

other. The number of such tables implemented depends on 
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needs and cost. In PC systems where only occasionally a 

process needs to be protected, one table should be enough. 

All other processes can use the original mapping that does 

not need a remapping table. The memory-to-cache mapping 

needs to be updated from time to time, during the execution 

of the process, as described later. Similar to PLcache, a P 

bit and ID field are also added to each cache line. 

B. Randomization of cache interference 

We first define terms we will use in our discussion. 
 

Name Description 

R , S R is the cache line being replaced in cache set S. 

R’ , S’ 
R‟ is the cache line being replaced in another cache 
set S‟ which is randomly selected. 

D The memory block being fetched into the cache. 

PX The P-bit of cache line X, e.g., of R, R‟ or D. 

In the case of cache interference between the victim and 

attacker processes (external interference), the interference 

occurs only when the victim evicts a line of the attacker. In 

RPcache, rather then replacing line R, another cache set S‟ 

is randomly selected with equal probability. The new line D 

that is to be put into the cache then replaces R‟ in S‟ instead 

of R in S. The memory-to-cache mappings of S and S‟ are 

swapped such that next time when the victim process 

wishes to access D, he will access the correct cache line. 

From the attacker‟s point of view, when he detects a cache 

miss, the cache miss can be caused by the victim‟s access 

to any cache set, with equal probability. Hence he can learn 

nothing about the address that the victim accessed. Note 

that after swapping the memory-to-cache mapping of S and 

S‟, if the process wishes to access another cache line origi- 

nally in set S, it will now access set S‟. It will miss on set 

S‟ and bring another copy of the line into set S‟ although 

set S still has it. To avoid this, ideally the cache lines in S 

and S‟ that belong to the current process should also be 

swapped. However, for efficiency we invalidate all such 

lines in S and S‟ and write them back to memory if they are 

dirty. Future accesses to them will get them correctly from 

the next level of the memory hierarchy. Since the selection 

of S‟ is independent of S, R and D, it can be pre-computed 

and the write-backs can be performed in the background to 

hide the associated overhead. 

In the case of cache interference from other code in the 

victim‟s own process (internal interference), a similar idea 

can be applied. To distinguish the memory region to be 

protected from such internal interference, two fields, a P bit 

and ID field are added to each cache line (shown in Figure 

5), similar to the L bit and ID field in the PLcache. An in- 

ternal cache interference occurs if the new line D is non- 

protected while the old line R is protected, or if D is pro- 

tected and R is non-protected. As the attacker can not di- 

rectly observe internal cache interference (since the evicted 

lines belong to the victim himself), the attacker can only 

observe the overall effect like the encryption time in Bern- 

stein‟s attack. If such internal interference is rather fixed, or 

repeatable, like the eviction of AES table entries at fixed 

locations, the attacker can learn the fixed interference by 

performing a large number of trials, observing the cipher‟s 

execution time for each trial, and using statistical analysis 

of these times. Therefore by randomizing every internal 

cache interference there will not be any repeatable interfer- 

ence (which carries information) that can be observed by 

the attacker. To randomize internal cache interference, each 

time when the new line D and the old line R have different 

P-bit values, R is not replaced. D is returned to the execu- 

tion core if it is a load, or written to the next level of the 

memory hierarchy if it is a store, without replacing any line 

in the cache. At the same time, a cache set S‟ is randomly 

selected, and a line R‟ in S‟ is evicted. Then the original 

cache interference on R is now on R‟ which is purely ran- 

dom and not repeatable. 

The mechanisms for controlling which cache lines 

should be protected are similar to those used in the PLcache 

except that no new instructions are needed. In addition to 

the P bit and ID field in each cache line, a PP bit is also 

added to segment descriptors or the TLB entries. By using 

the segment/page based protection mechanism described 

for the PLcache, the OS and programmer can specify the 

memory region to be protected. In addition, if a section of 

code is marked as protected, i.e., the code segment descrip- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cache access handling procedure for RPcache 
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tor or the ITLB entry has its PP bit set, any cache accesses 

issued by the protected code will set the P bit of the 

touched cache lines. This gives a convenient way for the 

OS to protect critical modules, e.g., the crypto libraries. 

The OS only needs to set the PP bit of the code pages of 

such modules. 

C. Cache access handling 
Figure 6 shows the flow chart of the cache access handling 

procedure. A cache hit in the RPcache is the same as a 

normal cache hit except that the P-bit of the cache line 

needs to be updated, based on the value of the PP-bit. Dur- 

ing a cache miss, a line R in set S is chosen using the nor- 

mal cache replacement policy. If R belongs to another 

process, a random set S‟ is selected. The new line D then 

replaces R‟ in S‟ and the memory-to-cache mapping for S‟ 

and S is swapped. If R belongs to the same process, two 

cases need to be considered, as shown below. 
 

Case Description 

1 If PD == PR, R is replaced by the new line like in a nor- 
mal cache miss. 

2 If PD != PR, R can not be replaced and the access is per- 

formed without replacing R. R‟s replacement informa- 

tion is updated so that it will not be selected for eviction 

next time. This avoids repeated misses in set S. At the 

same time S‟ is randomly selected with equal probability 

among all cache sets, and R‟ in S‟ is evicted, based on 

the normal cache replacement policy for blocks in a set. 

Low-overhead RPcache Implementation: Using an extra 

level of indirection in cache indexing can introduce extra 

delay into the cache access. For an L2 or L3 cache, a 

straightforward table lookup implementation may be good 

enough since one extra cycle in L2 or L3 cache loads will 

not cause much performance loss. However, for an L1 

cache, which is often the most delay-sensitive module in a 

processor, an extra cycle on a cache hit may be unaccept- 

able. We now show that indirect indexing for our RPcache 

can be implemented, without requiring an extra cycle, nor 

extending the cycle time latency. 

Figure 7 shows the modified decoder circuitry for the 

RPcache based on the common implementation with the 3- 

to-8 NAND pre-decoder and the second stage NOR gates. 

Rather than having a fixed connection for each input of the 

NOR gate with one output of a 3-to-8 NAND pre-decoder, 

each input line of the NOR gate is connected via switches 

to all of the 8 output lines of the pre-decoder. The switches 

are controlled by a register called the permutation regis- 

ter(PR), and at any time only one switch is on. Each permu- 

tation register is one entry of the permutation table in Fig- 

ure 5. Note that we omit the MUX in Figure 5 for clarity. 

Compared with the original decoder, the only extra delay in 

the critical path is caused by the switch transistor. The path 

from the PR to the output of the NOR gate is not the critical 

path since the PR can be read out early in the pipeline in- 

stead of at the beginning of the cache access cycle: once the 

instruction is known as a memory-accessing instruction and 

to which process it belongs, the PRs can be read out and 

properly selected by the MUX. The delay caused by the 

switches is mainly due to the drain capacitance of the 

switch transistors which increase the load capacitance of 

the 3-to-8 NAND pre-decoders. To overcome this, we im- 

plement multiple copies of the pre-decoders, and let each of 

them drive a portion of the vertical lines such that the load 

of each NAND gate does not increase much. We also 

manually adjust the transistor sizes along the critical path, 

including the address bit drivers, the NAND gates, and the 

switches. We also insert a buffer between the address bit 

driver and the pre-decoders. We model this using cacti-3.2 

tool [10], assuming a 0.18um technology. Table 3 shows 

the simulated results, where we first optimized the access 

time to less than 5% increase, then optimized the power to 

less than 10% increase. The increase in percent is relative 

to the unmodified cache modeled in cacti-3.2. Our results 

show that we can achieve approximately the same cache 

access time with up to 10% increase in power consumption. 

This is a straight forward implementation and further cir- 

cuit optimization can certainly lead to even better designs. 

 

 

Figure 7. Address decoder circuitry of the RPcache 
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avg i 

Table 3. Timing and Power Estimation of RPcache 
RPcache 16K 2way 32K 2way 16K 4way 32K 4way 

Access 
time(ns) 

1.225 
(+2.1%) 

1.331 
(+1.7%) 

1.293 
(+1.1%) 

1.344 
(+3.3%) 

Power 
(nj) 

1.205 
(+8.6%) 

1.282 
(+1.3%) 

1.792 
(+6.1%) 

1.906 
(+2.1%) 

 

5. Evaluation 
 Security Analysis 
Security analysis of the PLcache: In a PL cache, the criti- 

cal cache lines of the victim are locked in the cache, and the 

victim‟s accesses to these lines will always hit in the cache 

without causing any evictions of the attacker‟s cache lines. 

The attacker therefore can not learn anything about the vic- 

tim‟s accesses to these lines. This defeats the Percival-type 

attack. Similarly, accesses from other parts of the code in 

the same process also can not interfere with the accesses to 

the critical cache lines. 

  
(a) In traditional cache (b) In RPcache 

Figure 8. Channel model of the cache-address- 
based side channel 

Security analysis of the RPcache: We model the cache 

side channel as a communication channel (Figure 8), and 

prove that in the RPcache this side channel has zero chan- 

nel capacity, meaning no information can be inferred by the 

attacker based on his observation of cache misses. 

In the case of cache interference between processes, the 

victim and the attacker processes are the sender and the 

receiver in the channel, respectively. In the case of internal 

cache interference, either the protected code or the unpro- 

tected code in the same process can be the sender or the 

receiver (since they mutually interfere with each other). 

The input alphabet of the channel is the cache set number 

that the sender has accessed. The output alphabet is the 

cache set number where the receiver observes a miss. Both 

input and output alphabets are 2
M

 in size. We model the 

channel as a noiseless discrete time synchronous channel, 

where every access of the sender has an outcome at the 

output of the channel (i.e., evicts a cache line that belongs 

to the receiver) and can be observed by the receiver without 

error. This is the ideal case of the real cache side channel, 

and its capacity is the upper bound of the real channel. Fig- 

ure 8(a) is the channel model for the traditional cache, 

which has a capacity of log2(2
M

)=M bits per channel use 

[11], where 2
M

 is the total number of cache sets. Figure 8(b) 

is the channel model for the RPcache. In the RPcache, each 

time the sender evicts one of the receiver‟s cache lines, the 

receiver will experience a miss. However, as explained in 

section 4.2, this miss can be caused by the sender‟s access 

to any cache set, with equal probability. In other words, 

given an output symbol j, the probability that it is caused by 

an input symbol i is equal for any i. We then have the fol- 

lowing theorem. 

Theorem 1: In an RPcache, the capacity of the side channel 

based on cache line addresses is zero. 

Proof: 

Let Pr(j|i) denote the conditional probability that given 

the input symbol i, the output symbol j is observed: 

Pr(j|i) = Prob(output = j | input = i) 
The set of such conditional probabilities is called the 

channel matrix, which determines the channel capacity. 

According to section 4.2(B), the following relation 

holds: 

Pr(j|i) = Pr(j’|i’) for any i,j and i’,j’ 

In information theory, it is straight forward to prove 

that a channel with such a channel matrix has a zero 

capacity [11]. □ 

In Percival’s attack, the attacker can detect cache misses 

caused by the victim‟s accesses. But according to Theorem 

1, the attacker can learn nothing about the victim, and 

hence the attack can not succeed. 

In Bernstein’s attack, the victim is the AES code within a 

module. The attacker can not directly observe the output of 

the channel and can only see an aggregate version of the 

outputs, e.g., the execution time of the overall program. As 

we discussed in section 4.2(B), RPcache makes the inter- 

ference to the AES table completely random. Therefore the 

attacker will not be able to generate the timing characteris- 

tic charts shown in Figure 2. The average time t   
i
(p , K) 

will be about equal for all i, pi and K. No key information 

can be inferred from the correlation between the two charts 

in Figure 2. 

 Performance Evaluation 
We implemented the PLcache and the RPcache on M-Sim 

v2.0 [12] which is a multi-threaded microarchitectural 

simulation environment based on simplescalar3.0d. AES is 

used to evaluate the performance impact of the new cache 

architectures on code being protected. The SPEC2000 

benchmark suite is used for evaluating the performance 

impact on general purpose workloads. In SPEC2000 

benchmark simulation, the appropriate number of instruc- 

tions are fast forwarded, ranging from 100 million to 2.1 

billion instructions. Cycle-accurate simulations are then 

performed for 100 million instructions. Table 4 shows the 

simulation parameters used. 

Performance impact on the protected code: Figure 9 shows 

the performance of the OpenSSL 0.9.7a implementation of 

AES on a processor with a traditional cache (Baseline), an 

L1 PLcache and an L1 RPcache. A total of 5 Kbytes of data 

need to be protected in this AES implementation. The 
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Figure 9. Performance comparison of AES code 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Overall throughput with SPEC2000fp benchmarks 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Overall throughput with SPEC2000int benchmarks 

Figure 10. Performance impact on overall throughput 

simulated program performs the generation of 1 KByte 

packets and the encryption of the packets, and runs alone 

on the processor. To examine the effects of the cache ca- 

pacity and the configuration on performance, we vary the 

cache size from 4K to 32K and simulated the direct- 

mapped, 2-way and 4-way set-associative configurations 

for each size. Our results show that PLcache is sensitive to 

the cache size and configuration. When the size of the pro- 

tected memory (5KB) is larger than the cache capacity 

(4KB cache), the performance is always bad because all 

cache lines are locked. Implementing the PLcache as a di- 

rect-mapped cache is also not a good idea since once a line 

is locked, it generates a lot of conflict misses. For cache 

sizes larger than the protected data, with set-associativity at 

least 2, the PLcache can achieve comparable performance 

to the traditional cache. In contrast, the RPcache consis- 

tently achieves almost the same performance as the tradi- 

tional cache, regardless of the cache capacity and configu- 

ration. The performance impact caused by the random 

cache evictions in RPcache is negligible: worst case 1.7% 

(on 4K directed-mapped cache) and 0.3% on average. We 

also simulate the L2 PLcache and L2 RPcache. As the L2 

cache is large enough to hold the working set, no perform- 

ance degradation is observed. 
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Table 4. Simulation parameters 
Simulation Parameters Value 

Decode/Issue width 4/4 

Integer ALUs 4+1 multi/div unit 

Floating-point ALUs 4+1 multi/div unit 

ROB size 96 

Physical RF size 96 each for Int/FP 

Fetch Policy for SMT icount 

L1 instruction cache 64KB 2-way 32B 

L2 unified cache 512K 8-way 64B 

Cache access time 2 cycles L1, 12 cycles L2 

Memory access latency 200 first chunk, 4 inter 

L1 data cache ports 2 

LSQ entries 48 

Performance impact on the whole system due to the pro- 

tected code: The PLcache and RPcache may impact the 

performance of the system during the execution of the pro- 

tected code, e.g., the performance of other general purpose 

workloads running concurrently while encryption is being 

done for a file. In the simulation, we assume that the pro- 

tected code (AES) is running with another thread simulta- 

neously. We use an 8Kbyte direct-mapped L1 D-cache and 

a 32Kbyte 4-way L1 D-cache to bound the cache impact. 

The 6 bars per SPEC2000fp or SPEC2000int benchmark in 

Figure 10 show the simulations of the baseline, PLcache 

and RPcache for 8K 1-way L1 D-cache, then for 32K 4- 

way D-cache. For an 8Kbyte direct-mapped cache, PLcache 

causes an average performance degradation of 12% and 

14% on floating point benchmarks and integer benchmarks, 

respectively. The RPcache causes 0.3% degradation on 

floating point benchmarks and 0.07% improvement on inte- 

ger benchmarks. The improvement is a result of the swap 

operations of the RPcache which avoid many conflict 

misses. On a 32Kbyte 4-way cache, the PLcache achieves a 

0.2% performance improvement on both integer and float- 

ing-point benchmark sets. This is because the 32Kbyte 

cache is large enough to hold the working sets for both 

threads and the protected code benefits from the locked 

cache lines that avoid misses on these lines. The perform- 

ance degradation for the RPcache is 0.3% on FP suite and 

1.2% on INT suite, respectively. The increase in perform- 

ance degradation is due to the higher overhead associated 

with the swap operations for a set-associative cache. How- 

ever, the absolute degradation is still very small. We also 

examined the effect of implementing the L2 cache as a 

PLcache or RPcache. The effect is again insignificant. 

Although we only use AES as the protected code in our 

simulations, our conclusions are not specific to AES. The 

sensitivity of PLcache‟s performance to the cache configu- 

ration and capacity (relative to the size of the protected 

memory region) is due to the locking behavior and is not a 

result of any AES-specific factor. The robustness of the 

RPcache‟s performance is due to the fact that we allow 

sharing – and our design intentionally minimizes the re- 

strictions on sharing. 

 Comparison with Prior-Art 
Table 5 summarizes the advantages of our PLcache and 

RPcache solutions compared with the prior-art partitioned 

cache solution, in terms of both security and performance. 

Table 5. Comparing with prior-art Partitioned Cache 
Security & 

Performance 

Partitioned 

Cache 

Our 

PLcache 

Our 

RPcache 

Prevents external 
Interference? 

Yes Yes Yes 

Prevents Internal 
Interference? 

No Yes Yes 

Relative 
performance 

Low Medium High 

Security: All three approaches can prevent information 

leakage via external cache interference. Partitioned cache 

and PLcache provide private partitions to a process which 

are not accessible by other processes. RPcache randomizes 

the interference so that it carries no useful information. The 

partitioned cache can not, however, defend against attacks 

based on internal interference; a private partition still al- 

lows code within a process to contend for cache lines and 

cause interference, as in Bernstein‟s statistical attack. 

PLcache does not have this problem, because it explicitly 

locks the desired lines in cache, and other parts of the same 

process cannot interfere with these cache lines. RPcache 

randomizes the interference – hence it carries no useful 

information. 

Performance: A partitioned cache does not allow a process 

which uses very few cache lines to make its unused cache 

lines available to other processes which may need more 

cache lines than they have in their partitions. Hence, it has 

the lowest performance among the three approaches. 

PLcache can achieve better performance because it has a 

locking mechanism that allows it to minimize the size of 

flexible private partitions, leading to better cache utiliza- 

tion. RPcache allows different processes to share cache 

slots and therefore has the smallest performance degrada- 

tion. In addition, the performance of the partitioned cache 

and PLcache depend on software to specify proper parti- 

tioning of the cache, while the performance of the RPcache 

is very robust, with little dependence on the software and 

the underlying hardware cache architecture. 

6. PAST WORK 
The problem of information leakage via the cache was first 

mentioned and discussed in the context of covert channels 

[13] where the information is intentionally modulated over 

the cache interference. In 2002, Page [14] described a theo- 

retical attack exploiting cache misses. In 2002 and 2003, 

Tsunoo et al. studied attacks against DES on computers 

with caches [15][16]. In 2005, Bernstein [5] and Osvik et 

al. [7] concurrently developed cache timing attacks against 

AES. Pervical [6] demonstrated an attack against RSA on 

an SMT processor. Since then, a number of new cache- 

based side channel attacks have been reported in [8][17]. 
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Most past work on mitigating cache-based side channel 

attacks focused on software solutions. New implementa- 

tions of AES and RSA were proposed and their perform- 

ance evaluated [9]. Partitioning resources, including caches 

have also traditionally been used to mitigate covert chan- 

nels; more recently, Page [18] also used a Partitioned 

Cache for mitigating side channels. Our PLcache uses a 

different approach to realize a minimal “virtual partition”, 

achieving greater security and higher performance with 

little hardware cost (Table 5). We also propose a randomi- 

zation-based cache solution which is completely different. 

Other related work include the HIDE cache [19] which 

takes a probabilistic approach to mitigate control flow in- 

formation leakage. In contrast, we focus on information 

leakage caused by cache interference rather than due to the 

exposure of address traces on the system memory bus. Our 

assumptions are fundamentally different and the proposed 

architectures are also very different. 

 

7. CONCLUSIONS 
Cache-based side channel attacks can be very dangerous. 

Almost all computing systems have shared caches at some 

level and will be susceptible to these attacks. These attacks 

are software attacks – very easy to perform, without the 

need for special equipment, and the attacker does not need 

physical access to the device. The attacker process can be 

unprivileged and can even be a remote client. The attacks 

are very effective: the full key bits can be recovered in a 

short time. 

We presented analysis of why and how different types of 

cache-based side channel attacks work. We identify cache 

interference as the root cause of these attacks. We proposed 

novel general-purpose hardware solutions, the PLcache and 

the RPcache, that eliminate or randomize cache interfer- 

ence, respectively. The PLcache, with minimal hardware 

cost, can help the software developer achieve security 

without losing performance. With a little more hardware, 

the RPcache can robustly provide both security and per- 

formance, even without input from the programmer. Our 

performance evaluation shows that the RPcache causes 

performance degradation of less than 2% on average. Using 

an information-theoretic method, we mathematically 

proved the security of the RPcache. 

Future work includes identifying more processor and 

cache induced side channel attacks, and finding solutions to 

mitigate this growing threat. We hope that this paper will 

help stimulate new research in the design of security-aware 

cache and computer architectures that do not sacrifice on 

performance, cost and energy consumption. 
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