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Abstract— Recent research has suggested that sequential 
consistency (SC) in GPUs can match weak memory models as 
long as ordering stalls are reduced by loosening ordering for 
read-only and private data. In this study, we tackle the related 
issue of stall latencies reduction for read-only and read-write 
data. 

We find that SC stalls, which mostly result from previous 
stores in the same thread, are problematic for work-loads 
involving inter-workgroup sharing. This overhead is further 
increased by the requirement to stall while requesting write 
rights (to ensure write atomicity). To solve this, we suggest 
RCC, a GPU coherence mechanism that still permits SC 
implementation while granting write permissions without 
stalling. Even though each core may view different global 
memory orders and L1 read permissions, RCC uses logical 
timestamps to make these determinations. 
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a different logical ―time,‖ SC ordering can still be maintained. 
Our concept does not call for significant core modifications or 
additional per-core storage to categorise read-only/private 

data, in contrast to earlier GPU SC suggestions. Within 7% of 
the best non-SC architecture, total performance for workloads 
including inter-workgroup sharing is 29% higher and energy 

consumption is 25% lower than in the best previous GPU SC 
designs. 

 

INTRODUCTION 

Modern processors and GPUs can support multiple inflight 

memory requests not only from different cores but also from 

independent instructions in the same thread. This can result 

in memory operations appearing to execute out of order: two 

cores — or even two instructions in the same thread — could 

potentially observe memory writes in different order, leading 

to difficult-to-debug synchronization bugs. To constrain the 

range of allowable behaviour, processors and programming 

languages define memory models, which specify precisely 

which writes a memory read may observe. 

Sequential consistency (SC) — the most intuitive model 

— requires that (a) all memory accesses appear to execute 

in program order and (b) all threads observe writes in the 

same sequence [1]. To ensure in-order load/store execution, 

a thread must delay issuing some memory operations until 

preceding writes complete; we refer to these delays as SC 

stalls. Moreover, since all cores must observe writes in the 

same order, stores cannot complete until they are guaranteed to 

be visible to all other threads and cores. Because of these 

restrictions, few modern commercial CPUs have supported SC 

[2]; typically SC is relaxed to permit limited [3, 4] or near-

arbitrary reordering [5–8]; programmers must then insert memory 

fences for specific memory operations, in essence manually 

reintroducing SC stalls. GPUs manufacturers have followed 

suit: both NVidia and AMD GPUs exhibit weak 

inter-workgroup sharing intra-workgroup sharing 
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Figure 1. SC stalls are (a) infrequent, but (b) mostly due to preceding 
stores; (c) average store latencies are much longer than load latencies; 
(d) zero invalidate latency leads to substantial speedup for inter-
workgroup sharing workloads. 

 

consistency [9] similar to WO [10] or RC [11] models. 

Correctly inserting fences is difficult, however, 

especially in GPUs where all practical programs are 

concurrent and performance-sensitive. The authors of [9] 

found missing fences in a variety of peer-reviewed 

publications, and even vendor guides [12]. Such bugs are 

very difficult to detect: some occurred in as few as 4 

out of 100,000 executions in real hardware, and most 

occurred in fewer than 1% of executions [9]. Code 

fenced properly for a specific GPU may not even work 

correctly on other GPUs from the same vendor: some of 

these bugs were observable in Fermi and Kepler but not 

in older or newer microarchitectures [9]. 

SC hardware is desirable, then, if it can be 

implemented without significant performance loss. 

Recent work [13, 14] has argued that this is possible in 

GPUs: unlike CPUs, which lack enough instruction-

level parallelism (ILP) to cover the additional latency of 

SC stalls, GPUs can leverage abundant thread-level 

parallelism (TLP) to cover most SC stalls. The authors 

of [14] propose reducing the frequency of the remaining 

SC stalls by relaxing SC for read-only and private data; 

classifying these at runtime, however, requires complex 

changes to GPU core microarchitecture and carries an 

area overhead in devices where silicon is already at 

a premium. Moreover, both studies focused on SC built 

using CPU coherence protocols (MOESI and MESI) with 

write-back L1 caches. In GPUs, however, write-through 

L1s perform better [15]: GPU L1 caches have very little 

space per thread, so a write-back policy brings 

infrequently written data into the L1 only to write it back 

soon afterwards. Commercial 
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GPUs have write-through L1s and require bypassing/flushing 

L1 caches to ensure intra-GPU coherence [16–18].1 Compared 

to the best GPU relaxed consistency design, the performance 

L2 
 

core 0 

cost of implementing SC appears to be closer to 30% [15].       

To trace the roots of this performance loss, we evaluated 

an SC implementation similar to prior work [13, 14] but 

with GPU-style write-through L1 caches (see Sec. IV-A for 

simulation setup). We examined memory-intensive workloads 

with and without inter-workgroup sharing previously used 

 

 
core 2 

 
 

core 3 

ST A 

to evaluate GPU cache coherence [15]; the inter-workgroup 

benchmarks rely on inter-core coherence traffic, while the 

intra-workgroup benchmarks communicate only within each 

GPU core. We found SC stalls to be relatively infrequent 

(Fig 1a): in only one case were more than 20% memory 

operations ever stalled because of SC; this supports prior 

arguments [13] that the massive parallelism available in GPUs 

can cover most ordering stalls introduced by SC. 

We next examined the cause of each stall — i.e., the type 

of the preceding memory operation from the same thread. 

Fig. 1b shows that most SC stall cycles are spent waiting for 

a previous store (or atomic) instruction to complete; indeed, 

in most cases, nearly all stall delays are due to waiting for 

prior writes. This is because average store latencies are very 

long: for workloads with inter-threadblock communication, 

store latencies are often much longer than load latencies 

(2.4 gmean), and up to 3.7 longer (Fig. 1c). 

This makes sense: to maintain SC, each store must receive 

an ack before completing to ensure that the new value 

has become visible to all cores. There are two parts to 

this latency: one — the round-trip to L2 — is unavoidable 

with the write-through L1 caches found in GPUs. The other 

part is ensuring exclusive coherence permissions: in our 

MESI-based experiment the write waits until other sharers 

have invalidated their copies, while in timestamp-based GPU 

coherence protocols like TC-sTRong [15] the store waits 

for all read leases to expire. Long-latency stores can affect 

performance not only by delaying SC stall resolution, but 

also by occupying buffer space or stalling same-cacheline 

stores from other threads in MSHRs until the ack is received. 

To find out whether coherence delays are significant, we 

implemented an idealized variant of SC where acquiring 

read and write permissions is instant (SC-IdEaL). Fig. 1d 

Figure 2. Enforcing SC in logical time. Logical time increases left to right; 
all cores that observe the new value of A must advance their logical times 
past that of the store. 

 
ically [21, 22], and the recent insight that logical timestamps 

can be used directly to implement a coherence protocol [23]. 

We propose Relativistic Cache Coherence (RCC), a simple, 

two-state GPU coherence protocol where each core maintains 

— and independently advances — its own logical time. The 

L2 keeps track of the last logical write time for each cache 

block; whenever a core accesses the L2, it must ensure that 

its own logical time exceeds the last write time of the relevant 

block. Data may be cached in L1s for a limited (logical) time, 

after which the block self-invalidates. 

Fig. 2 shows how RCC maintains SC in logical time. First, 

core 0 loads address A, and receives a fixed-time lease for 

A from the L2, which records the lease duration; core 0 

may then read its L1 copy until its logical time exceeds the 

lease expiration time. Core 1 writes to A, but to do this it 

must advance its own logical time to past the lease given out 

for A; this step (dashed line) is equivalent to establishing 

write permissions in other protocols, but occurs instantly in 

RCC. Core 2 loads A from L2 and advances its logical time 

past the time of core 1’s write. Finally, core 3 also reads 

A. The load is logically before the store to A (because core 

3’s logical clock is earlier than A’s), but physically the write 

to A has already happened, and only the new value of A is 

available at the L2. Core 3 thus receives the new value of A, 

but must also advance its logical time to that of A’s write. 

Naturally, the cost of synchronization does not entirely 

disappear: advancing a core’s logical time may cause other 

L1 cache blocks to expire. In essence, we are exchanging 

a reduction in store latency for A for potentially some 

additional L1 misses on other addresses. While this would be 
shows the speedup of SC-IdEaL over realistic SC: for problematic for latency-sensitive CPUs, throughput-focused 
workloads with inter-workgroup sharing, idealizing coherence 

yields a substantial performance improvement (1.6 gmean); 

workloads with only intra-workgroup sharing see no benefit. 

To address this, we leverage Lamport’s observation that 

ordering constraints need to be maintained only in logical 

time [20], prior observations that SC can be maintained log- 

 
1GPU vendor literature and some prior work use ―coherence‖ to describe 

automatic page-granularity data transfer between the host CPU and the 
GPU’s shared L2; some academic proposals use ―system coherence‖ for the 
same concept [19]. To the best of our knowledge, no existing GPU product 
implements hardware-level intra-GPU coherence. 

GPUs were explicitly designed to amortize this kind of cost; 

we will show that in GPUs this tradeoff is worth making. 

Lamport’s logical time has recently been proposed as 

a coherence mechanism for CPUs [23, 24]. Performance, 

however, was subpar even compared to the much simpler 

MSI protocol, even though the proposed protocol was more 

complex than RCC and relied on a complex speculation-and- 

rollback mechanism. RCC is not only much simpler, but 

actually outperforms the best existing GPU protocols. 

In the rest of this paper, we describe RCC and demonstrate 

old value valid new value valid 

L1 copy valid 

LD A 

L1 copy valid 

LD A 

L1 copy valid 

LD A 
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how it addresses the store latency and SC stall problems 

identified above. In contrast with prior GPU SC work [14], 

RCC does not explicitly classify read-only/private data: 

instead, a predictor naturally learns to assign short cache 

lifetimes to frequently written shared data. Unlike prior GPU 

coherence work [15], RCC operates in logical time; as a 

result, stores acquire write permissions instantly but still 

maintain SC. RCC underpins a sequentially coherent GPU 

memory system that outperforms all previous proposals and 

closes the gap between SC and weak consistency in GPUs. 

The contributions of our work are: 

• we trace the cost of SC overheads in realistic GPUs to 

the need to acquire write permissions for shared data; 

• we propose RCC, a simple two-state GPU coherence 

protocol that significantly improves store performance; 

• we demonstrate that an SC implementation using RCC 

significantly reduces SC stall rates and resolve latencies, 

and outperforms the best prior GPU proposal by 29%; 

• we close the performance gap between best SC and 

weak consistency proposals for GPUs to within 7%. 

I. BackgRoUnd 

A. Consistency and coherence 

Consistency. A memory consistency model defines which 

sequences of values may be legally returned from the 

sequence of load operations in each program thread. For 

example, the following code snippet from [25] represents 

a common synchronization pattern found in many inter- 

workgroup sharing workloads (e.g., work queues in dLB): 
 

 

The question is, should core C1 be allowed to see done=true 

even if data=old? This is clearly not the intended behaviour, 

since C1 could see a stale copy of data; nevertheless, it is 

allowed by many commercial CPUs and all extant GPUs [9]. 

Sequential Consistency [1] most closely corresponds to 

most programmers’ intuition: it requires that (a) memory 

operations appear to execute and complete in program order, 

and (b) all threads observe stores in the same global sequence. 

In SC, an execution where done=true when data=old is 

illegal because either (a) the writes to data and done were 

executed out of order by core C0, or (b) they were executed 

in one order by C0 but observed in a different order by C1. 

Weak consistency models, on the other hand, allow near- 

unrestricted reordering of loads and stores in the program, 

provided that data dependencies are respected; such reorder- 

ing typically occurs during compilation and during execution 

in the processor. Special memory fence instructions must be 

used to restrict reordering and restore sequentially consistent 

behaviour: in the example above, a fence is needed to ensure 

that the store to data completes before the store to done. As 

discussed in Sec. I, missing fences can be very difficult to find 

in a massively multithreaded setting like a GPU; conversely, 

adding too many fences compromises performance. 

Since compilers can reorder or elide memory references 

(e.g., via register allocation), a programming language must 

also define a memory model. Due to the range of consistency 

models present in extant CPUs, languages like Java [26] or 

C++ [27] guarantee sequentially consistent semantics only for 

programs that are data-race-free (i.e., properly synchronized 

and fenced); this is known as DRF-0 [28]. The HRF model 

recently proposed for hybrid CPU/GPU architectures further 

constrains DRF-0 by requiring proper scoping [29]. 

Coherence. In systems with private caches, a cache 

coherence protocol ensures that writes to a single location are 

ordered and become visible in the same order to all cores [30]; 

the aim is to make caches logically transparent. Since caches 

are ubiquitous, providing coherence is a fundamental part of 

implementing any memory consistency model. 

Not all coherence protocols can support SC. The best 

prior GPU coherence protocol TC-wEak [15] allows stores to 

proceed without exclusive write permissions (unless properly 

fenced); while this yields a 30% performance improvement, it 

compromises write atomicity, which is necessary for SC [31]. 

RCC performs close to TC-wEak without giving up SC. 

B. GPUs vs. CPUs: a consistency and coherence perspective 

Consistency. Modern multicore CPUs have largely settled 

on weak memory models to enable reordering in-flight 

memory operations [3–7]: because CPUs support at most a 

few hardware threads, the memory-level parallelism (MLP) 

obtained from reordering memory operations is key to 

performance. GPUs, on the other hand, buffer many tens of 

warps (e.g., 48–64 [16–18]) of 32–64 threads in each GPU 

core (SM), and when one warp is stalled (because of an L1 

cache miss, for example), the core simply executes another. 

With fine-grained multithreading, GPUs can amortize 

hundreds of cycles of latency without reordering memory 

operations; recent work [13, 14] has suggested that the same 

mechanism can cover the ordering stalls required by SC. 

Indeed, hardware techniques that reorder accesses — such 

as store buffers — are either too expensive or ineffective in 

GPUs, so leaving them out does not hurt performance [14]. 

Coherence. CPU caches are generally kept coherent by 

tracking each block’s sharers and invalidating all copies 

before writing the block. Most protocols in commercial 

products are quite similar: they have slightly different states 

(MESI, MESIF, MOESI, etc.) or sharer tracking methods, but 

the basic operation relies on request-reply communication 

between cores and an ordering point such as a directory. 

All commercial GPUs we are aware of lack automatic 

coherence among private L1 caches: in GPU vendor literature, 

―coherence‖ refers only to the boundary between the host CPU 

core C0 

data = new 
done = true 

weakly ordered models 

need a memory fence here 

core C1 

while (!done) { 
} // wait for new data value 

. . . use new data. . . 
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 MESI TCS TCW RCC 

SC support? yes yes no yes 

stall-free 

store per- 

missions? 

no 

(invalidate 

sharers) 

no (wait 

until lease 

expires) 

yes (but 

stall for 

fences) 

yes 

Table                               I 
SC and cohEREncE pRoTocoL pRoposaLs foR GPUs 

 

and the GPU. NVidia Pascal allows the GPU to initiate page 

faults and synchronize GPU and CPU memory spaces [32], 

but intra-GPU coherence requires bypassing the L1 caches [9]. 

AMD Kaveri APUs bypass and flush the L1 cache for intra-

GPU coherence, and bypass the L2 for CPU-GPU sharing 

[33]. Details for ARM MALI GPUs are scant, but it appears 

that the coherence boundary terminates at the GPU shared 

L2 cache and does not include the L1s [34]. 

Efficient intra-GPU coherence implementations are subject 

to different constraints than CPUs. GPUs have 15, 32, or even 

56 SM cores [16–18, 32], simultaneously executing around 

100,000 threads. While some prior studies [13, 14] (and our 

motivation study in Sec. I) have assumed CPU-like MESI 

coherence, a realistic implementation could face simultaneous 

coherence requests from tens of thousands of threads; just 

the buffering requirements would be prohibitive [15]. 

The only other coherence protocol proposed for GPUs 

leveraged two observations: (a) that write-through caches 

provide a natural ordering point at the L2, and (b) that inter- 

core synchronization can be implicit via a shared on-chip 

clock [15]. A cache that requests read permissions receives 

a read-only copy with a limited-time lease; this copy may 

be read until the shared clock has ticked past the lease time. 

Two protocols are proposed: TC-sTRong (TCS) can support 

SC if the core does not reorder accesses, but stalls stores at 

the L2 to ensure that all leases for the address have expired; 

TC-wEak (TCW) allows stores to proceed without stalling, 

but compromises write atomicity and cannot support SC. 

In the next section, we describe Relativistic Cache Coher- 

ence, a new GPU coherence protocol that supports SC (like 

TCS) but allows stores to execute without waiting for write 

permissions (like TCW). Table I compares RCC with prior 

protocols proposed for GPUs in the context of SC. 

II. RELaTIvIsTIc CachE CohEREncE 

Relativistic Cache Coherence leverages the observation by 

Lamport [20] that consistency need only be maintained in 

logical time. Two threads may see the memory as it was at 

two different logical times, as long as each only observes 

all writes logically before — and never sees any writes 

logically after — its own logical ―now.‖ In RCC, cores 

maintain separate logical times, which become synchronized 

only when read-write data is shared. 

Like all library coherence protocols [15, 23, 24, 35, 36], 

RCC allows L1 caches to keep private copies of data only for 

limited-time ―leases‖ granted for each requested block; when 

a lease expires, the block self-invalidates in L1 without the 

need for any coherence traffic. Writes to a block must ensure 

that no valid copies are present in any L1s by ensuring that 

the write time exceeds the expiration time of all outstanding 

leases. In RCC, leases are granted and maintained in logical 

time, so writes can complete instantly by advancing the 

writing core’s logical clock. 

A. Logical clocks, versions, and leases 

In relativistic coherence, each core maintains, and indepen- 

dently advances, its own logical clock (now). Similarly, each 

shared cache (L2) block maintains it own logical version 

(ver), equal to the logical time of the last write to this block. 

Since the L2 grants per-block read leases to private L1 

caches, it keeps track of when the last lease for a given block 

will expire (exp). Each L1 cache also keeps track of the exp 

it was given by the L2. Different L1s may have different 

exps for the same block, but none will exceed the latest exp 

in L2. Because L1s are write-through, they do not need to 

record ver for each block. 

A unique, global SC ordering of memory accesses is 

maintained in logical time by applying three rules: 

1) Core C reading cache block B must advance its logical 

time now to match B’s current version ver if B.ver > 
C.now. This ensures that C cannot use B to compute 

new data values with logical times < B.ver, i.e., that C 
does not observe a value of B ―from the future.‖ 

2) Core C writing cache block B must advance B’s ver to 

C’s now if B.ver < C.now, and advance its own now to 

B’s ver if B.ver > C.now. This ensures the new value 

of B cannot be used for computation in cores whose 

now is earlier, i.e., that B is not ―sent back in time.‖ 

3) Core C writing cache block B must advance its now 

as well as the new B.ver beyond the expiration time 

exp of the last outstanding lease for B. This ensures 

that the new value of B does not ―leak:‖ i.e., that any 

values computed from the new value of B by other cores 

cannot coexist in their L1s with the old value of B. 

The logical now times of memory operations provide a 

sequentially consistent ordering. Provided the core scheduler 

is modified to ensure that only one global memory access 

per warp is issued at any given time, RCC supports SC.2 

B. Example walkthrough 

Fig. 3 shows how RCC operates on a sequence of instructions 

from two different cores. Initially, C0’s cache has neither 

A and B (since now > exp) and core C1 has both. In the 

shared L2 cache, B has since been written by a third core 

and has ver = 30; because C1’s now has not advanced past 

10, however, it may still read its cached copy of B. 

2The proof that RCC supports SC is essentially the same as for Tardis [37], 

we refer the interested reader there. The main difference is that RCC permits 
a sequence of unobserved stores to share the same logical version; the SC 
ordering in that case is provided by the physical arrival times at the L2. 
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core 
C0 C1 

C0 
L1 cache 

C1 
L1 cache 

shared 

L2 cache 
C0: A 

C0: B 

C1: A 

C1: B 

 
 
 

 
 

  
 

= cached    
    = invalid    

or expired 

= now @ C0     

= now @ C1 

 

Figure 3. RCC executing accesses to two addresses (A and B) from two cores (C0 and C1). The table (left) tracks each core’s logical time (now), and each 
cache block’s version (ver) and read lease expiration (exp) after each instruction has executed; the rows represent the order of instructions as executed in 
physical time. The diagram (right) illustrates the lease durations in each cache (top) and how the logical time now advances in each core as the corresponding 
operations from the table execute (bottom); logical time flows left to right while physical time flows top to bottom. Bold values denote changes since the 
last step; crossed-out leases have expired. 

First, core C0 writes A, which updates the A.ver in the L2 

(rule 2); C1 still has now = 0 and can read its old copy of A. 

C0 then reads B, which receives a new lease (until logical 

time 40) but must advance its now past B.ver (rule 1). 

Next, C1 writes B, which updates B.ver and C1.now to 

41, past the last outstanding lease for B (rule 3). This step 

enforces SC ordering between the two cores: C1 next reads 

A, and is forced to pick up the value written by C0. 

Finally, C0 writes B, advancing its now past the 

previous write to B (rule 2), and then A, advancing past 

the last lease for A (rule 3). Because C1.now is earlier, 

however, C1’s next load will happen logically before C0’s 

write to A, and will not observe the new value. Note 

that SC has been maintained, as the overall behaviour 

is explained by the following   sequential   interleaving: 

C0: ST A, LD B; C1: ST B, LD A, LD A; C0: ST B, ST A. 

 

L1 FSM 
 
 
 
 
 
 
 
 
 
 
 

L2 FSM 
 
 
 

 
LD 
ST 
AT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

stable 
state 

 

transient 
state 

LD = load 
ST = store 
AT = atomic 

C. Coherence protocol: states and transitions 

The full state transition diagram for RCC, including both 

stable and transient states, is shown in Fig. 4. 

Stable states. RCC has two stable states: V (vaLId) and 

I (InvaLId). Blocks loaded into the L1 transition to the V 

state, and may be read until they are evicted, written, or until 

their leases expire, at which point they self-invalidate and 

transition to the I state. Stores (and atomic read-modify-write 

operations) may occur in both V and I states; the request is 

forwarded to the L2 (GPU L1s are write-through, write-no- 

allocate), and the block eventually transitions to I after the 

store ack is received. Expired blocks in V state (exp < now) 

are treated exactly the same way as blocks in I state for 

memory operations and cache replacement purposes. 

The L2 also only has V and I states. L2 misses retrieve 

the value from memory and transition to V. Because the L2 

is write-back (like in commercial GPUs ), the V state allows 

reads, writes, and atomic operations; a block transitions to I 

only when evicted by the L2 cache replacement algorithm. 

Transient states. L1 blocks also have three transient states: 

Figure 4.    Full L1 and L2 coherence FSMs (stable and transient states). 

 

IV, II, and VI; the first two are required for correctness, while 

the third is a GPU-specific optimization. 

IV indicates that a load request missed in the L1 and a gETs 

request has been sent; further load requests for the same 

cache block will be stored in the MSHR without more 

gETs requests, and the block will transition to V once 

the daTa response has been received. Stores received 

while in IV state cause a transition to II. 

II indicates that a store (or atomic) request has been sent 

to the L2, and the cache is waiting for an ack message 

with the logical time at which the write was executed 

(i.e., the new ver); this is necessary to maintain SC. 

While in II state, any daTa response from the L2 will 

be forwarded to the core, but the block will stay in II. 

VI is an optimization of the II state when the block was 

valid before the write; in VI, the block can still be read 

by other warps until the ack message with the new 

ver is received from the L2 cache; this is important in 

GPUs because round-trip access latencies to L2 can be 

IV 

V I 

LD 

VI ST 
AT 

LD 
ST 
AT 

II 

 

 

IV 
 

      

V evict I 

 
 

IAV 

B (old) 

A (old) A (new) 

B (new) 

memory op now A.exp B.exp now A.exp B.exp A.ver A.exp B.ver B.exp 

— — 20 10 10 0 10 10 0 10 30 10 

ST A — 20 10 10 0 10 10 20 10 30 10 

LD B — 30 10 40 0 10 10 20 10 30 40 

—   ST B 30 10 40 41 10 10 20 10 41 40 

—   LD A 30 10 40 41 51 10 20 51 41 40 

ST B — 41 10 40 41 51 10 20 51 41 40 

ST A — 52 10 40 41 51 10 52 51 41 40 

—   LD A 52 10 40 41 51 10 52 51 41 40 
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≥ 

hundreds of cycles [38]. 

To permit non-blocking misses, the L2 coherence controller 

has two transient states: 

IV buffers new gETs and wRITE requests in the relevant 

MSHR, keeping track of the maximum now times from 

the reading and writing processors. Once the data arrives 

from DRAM, the block’s version is updated to reflect 

any writes in the MSHR and a new lease is generated 

to satisfy any readers. 

IAV indicates an aToMIc operation received in an invalid 

state; this stalls any further L1 requests until the block 

has been retrieved from DRAM, its version has been 

established, and the atomic operation has completed. 

Fig. 5 shows the complete state transition table, including 

the generated messages and MSHR management details. 

RCC has fewer states and transitions than prior art. Earlier 

logical timestamp coherence work [23] requires three stable 

states each for L1 and L2 (transient states are not described), 

as well as MESI-like recall and downgrade mechanisms 

to implement a private writeable state; such inter-core 

communication is precisely the source of the SC store 

latencies we wish to avoid. Prior GPU coherence work also 

has more states (13 total) and transitions than RCC. In the SC- 

capable variant, a private state is used to avoid store stalls for 

private data; in the weakly ordered version, non-fenced stores 

do not stall but SC support is not possible. RCC employs 

logical timestamps to acquire store permissions instantly, and 

does not require private or exclusive states. 

 
D. L2 evictions and timestamp rollover 

Table II lists all timestamps maintained in RCC and their 

semantics. Core logical clock now, data write version ver, 

and lease expiration time exp were described in Sec III-A. 

L2 evictions. Because data copies in L1 automatically 

expire, RCC allows caches to be non-inclusive without 

RCC instead allows the eviction but ensures that, if the 

block is reloaded from DRAM, reading or writing it will 

cause any outstanding leases for it to expire. To enforce 

this, we could keep track of ver and exp for each block in 

DRAM, but this would require additional storage provisions 

in main memory. Instead, we store the maximum ver or exp 

of any evicted block as the ―memory time‖ mnow, one in 

each memory partition. To maintain logical ordering, a block 

loaded from DRAM will have its ver and exp set to mnow: 

any cores that read or write this block will have to advance 

their logical time to prevent the issue described above. 

Since the L2 is write-back (like in extant GPUs [16–18]), 

a wRITE request that misses in L2 will be stored in MSHR 

while the block is set to IV state and retrieved from DRAM, 

and any additional write requests are merged into the MSHR. 

To maintain correct logical write ordering, each MSHR keeps 

track of lastwr, the highest write time (originating core now 

value) of any wRITE requests received in IV state. WRITE 

requests with now lastwr update the MSHR data and lastwr; 

write requests with now < lastwr do not change lastwr but 

must be tracked until the final write time is known. The 

larger of lastwr and mnow will become the block’s ver; since 

this is the logical write time, the store can be acknowledged 

without waiting for the DRAM response. The store data will 

remain in the MSHR until the DRAM response arrives. 

A similar case arises for read requests that miss in L2. 

MSHRs keep track of lastrd, the latest now of any reading 

cores; this is used to calculate the lease expiration (exp) once 

the block is available, and can be elided to save space (lastwr 

would be used instead). 

Timestamp rollover. Because timestamps have finite 

exact representations and keep increasing, they are subject 

to arithmetic rollover. In our experiments, 32-bit logical 

timestamps advanced on average once for every 1073 core 

clock cycles; this corresponds to approximately one rollover 

per hour at clock speeds found in high-performance GPUs. 
requiring the usual REcaLL messages, as in prior GPU In principle, this can be handled simply by setting core 

coherence work [15]. Care must be taken, however, to 

maintain logical ordering when evicting blocks from L2: 

if a block were naïvely evicted and then re-fetched without 

preserving its ver and exp, it could then be read logically 

before it was written, or could be written before all leases 

expire. Singh et al [15] handle this by using an MSHR entry 

to store the evicted block until the timestamp expires, which 

limits the number of MSHR entries available for L2 misses. 
 

 

name granularity semantics 
 

 

now GPU core logical time seen by this core 

exp cache block lease expiration time 

ver cache block data version (last write time) 

mnow    mem. partition max(exp,ver) evicted to DRAM 

lastrd L2 MSHR latest now of any reading core 

lastwr    L2 MSHR latest now of any writing core 
 

 

Table II 
TIMEsTaMps UsEd In RCC 

now clocks to 0, flushing all L1s, setting all L2 ver and exp 

entries to 0, and setting all mnow values to 0; SRAMs that 

support flash-clearing [39] make this easy. However, rollover 

must be processed atomically in the presence of in-flight 

messages, transient cache states, and independent L2 banks. 

To implement this correctly, we observe that the L2 is the 

only coherence actor that actually increases timestamps (L1s 

only copy timestamps received from L2); therefore, the L2 

will be the first component to know that rollover is required. 

When an L2 partition needs to roll over a timestamp, it 

first ensures that all other L2 partitions have stalled and 

set their timestamps to 0. This can be done in many ways, 

perhaps using a narrow unidirectional ring with the rollover 

L2 partition sending a sTaLL flit and all other cores stalling 

before allowing the flit to continue; when sTaLL returns to 

the originating core, all cores will have stalled (in case of 

concurrent stall requests, lowest L2 partition ID wins). All 
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Figure 5. L1 (left) and L2 (right) state transition tables for RCC. D is the cache block (e.g., D.exp is the expiration time for the block), M represents a 

received message (e.g., M.ver in an ACK indicates the time when a write will become visible). Arrows signify state transitions. V and I are stable states; 
IV, VI, II (L1 only) and IAV (L2 only) are transient states. Braces denote coherence message contents; cache block data are included as appropriate. Shaded 
areas highlight protocol changes required for lease extensions. 
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Figure 6.     Left: fraction of loads that find data in V state but expired 
(either for coherence reasons or prematurely); expiration rate is negligible 
for intra-workgroup benchmarks. Right: Fraction of expired loads whose 
blocks that have not changed in L2 (and can be renewed). 

 

stalling partitions must set all of their timestamps (including 
lastwr and lastrd) to 0; queued requests and MSHR entries 

Figure 7. Left: interconnect traffic with (+R) and without (–R) the renew 
mechanism. Right: reduction in reads that find expired data in L1, with (+P) 
and without (–P) the lease predictor mechanism. 

 

assignment. Fig. 6 (right) shows that most such expirations 

are premature (i.e., the block’s L2 entry has not changed). 

are retained, with all timestamps reset to 0. The rollover Lease extension. Every such block generates a gETs 

partition then sends a fLUsh request to all L1s, and waits for 

responses from all; once these have been received, a REsUME 

flit is sent on the inter-partition ring, and all L2 partitions 

resume processing requests. An L1 that receives a fLUsh 

request sets its now to 0 and invalidates all entries before 

replying to L2; addresses with MSHR entries enter the II 

state, while the remaining addresses transition to I. 

 
E. Lease times, extension, and prediction 

When the L2 receives a gETs request, it generates a read lease 

for the block and sends the logical expiration time exp back to 

the requesting L1. So far, we have assumed all leases have the 

same duration (of 10 in Sec. III-B); intuitively, however, read- 

only data should receive very long leases to avoid expiration, 

whereas data shared frequently should receive short leases 

to avoid advancing the logical time too much when they are 

written (and thus causing other cache blocks to expire). 

When a lease is too short, a load request finds the L1 block 

in V state but with an expired lease (now > exp). Fig. 6 (left) 

shows how many L1 cache blocks are in V state but expired 

when accessed. Sometimes, this is the coherence protocol 

working as intended and indicates a transitive logically-before 

relation; at other times, the expiration reflects imperfect lease 

request and a daTa response from the L2. While the gETs is 

small, a daTa response includes the full cache block, which 

poses an unnecessary traffic overhead. 

Since the L2 knows when the block was last written (ver), 

it could potentially renew the lease by sending the new lease 

expiration time but no data (which the L1 already has). Before 

deciding whether to send REnEw or the full daTa, the L2 

needs to know whether the L1’s previous lease is older than 

ver; if it is, the L1 may have incorrect data. To provide this 

information, we modify gETs requests to carry the exp time 

of the expired lease (tracked by the L1): if this is newer than 

the data version ver in the L2, a REnEw grant can be sent. 

The required protocol changes are shaded in Figure 5; note 

that the complexity cost is minimal, with no additional states 

and only two new transitions. Prior work [23] also features a 

lease extension mechanism, but the renew mechanism there 

relies on keeping track of data versions ver in the L1 caches. 

Fig. 7 (left) shows that the renewal mechanism is ef- 

fective in reducing interconnect traffic for inter-workgroup 

sharing workloads by 15% (traffic is also reduced for the 

intra-workgroup benchmarks, but their expiration rates are 

negligible to begin with). 

Lease prediction. Although lease extension reduces inter- 

connect traffic, many expirations would not occur to begin 

L1 

state 

requests from processor core L1 events 

load store atomic evict    expiry DATA 
 

I      GETS WRITE ATOMIC — — — 

L2 responses 
 

RENEW 
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L2 

state 

ACK 
 

— 

I 
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MSHR.lastrd = M.now MSHR.lastwr = M.now 
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ATOMIC 
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— 
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— 

 exp = D.exp}   II 

 IV 

 II 
V  D.exp = D.ver = 

V cache 
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D.ver = 
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DATA {exp = D.exp, 
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IV add to 
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GPU cores 16 streaming multiprocessors (SMs) 

core config 1.4 GHz, 48 warps 32 threads, 32 lanes 

warp sched. loose round-robin 

register file 32,768 registers (32-bit) 

scratchpad 48 KB 
 

 

per-core L1  32 KB, 4-way set-associative, 128-byte lines, 

128 MSHRs 

total L2 1024 MB = 8 partitions 128 KB 

L2 partition  128 KB, 8-way set-associative, 128-byte lines, 

128 MSHRs; 340-cycle minimum latency [38] 
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Figure 8.   Top: stalls caused by SC, normalized to MESI; bottom: SC stall 
latency reduction normalized to MESI. L1s are write-through. 

 
DRAM 

8-flit VCs (5 for MESI, 2 otherwise) 

1400 MHz, GDDR, 8 bytes/cycle (175 GB/s 
peak), 460-cycle minimum latency, FR-FCFS 
queues, tCL=12, tRP=12, tRC=40, tRAS=28, 

tCCD=2, tWL=4, tRCD=12, tRRD=6, tCDLR=5, 

tWR=12, tCCDL=3, tWR=2 

in synchronized phases, with most data being read at the 

beginning of a phase and written at the end. These (and 

read-only) data should receive fairly long leases, while data 

that is shared often (e.g., locks) should receive short leases. 

To find the best lease, the L2 initially predicts the maximum 
 

lease times 32 bits, predicted from 8–16– · · · –1024–2048 
 

 

Table                                      III 
SIMULaTEd GPU and MEMoRy hIERaRchy 

 
 

inter-threadblock communication 
 

 

lease (2048) for every block. When the block is written, the 

prediction drops to the minimum (8), and grows (2 ) every 

time a read lease is successfully renewed. This way the L2 

quickly learns to predict short leases for frequently shared 

read-write blocks (such as those containing locks), but long 
leases for data that is mostly read and blocks that miss 

BFS breadth-first- graph traversal [40] in the L2 (e.g., streaming reads). A similar per-block lease 
search 

BH Barnes-Hut n-body simulation kernel [41] 

CL RopaDemo cloth physics kernel [42] 

prediction mechanism has been proposed [24] for logical-time 

CPU coherence protocols; unlike our predictor, however, short 

DLB dynamic load 

balancing 

workstealing algorithm for octree par- 

titioning [43] 

leases are preferred, and the consistency model is relaxed (to 
TSO) to maintain performance. Fig. 7 (right) shows that the 

STN stencil finite difference solver synchronized predictor reduces expired reads by 31% for inter-workgroup 
 

VPR place & route 

using fast barriers [44] 

FPGA synthesis tool [45] 
workloads (again, intra-workgroup benchmarks benefit but 

start with negligible expiration rates). 
intra-threadblock communication 

HSP        hotspot 2D thermal simulation kernel [46] 

KMN       k-means iterative clustering algorithm [46] 

LPS Laplace solver 3D Laplace Solver [40] 

Potential livelock. Because RCC allows cores to read 

cached data without advancing their logical clocks, a spinlock 

that only reads a synchronization variable may livelock unless 

other warps advance the logical time. This optimization is 
NDL Needleman- DNA sequence alignment [46] common in multicore CPUs with invalidate-based coherence, 

Wunsch 

SR anisotropic 

diffusion 

 
speckle reduction for ultrasound im- 

ages [46] 

but relies on implicit store-to-load synchronization that is 

not guaranteed by coherence or consistency requirements. 

LUD        matrix LU matrix LU decomposition [46] 
 

 

Table  IV 
BEnchMaRks UsEd foR EvaLUaTIon. 

 
with if each block received an optimal lease. We attempted to 

sweep a range of fixed leases, but found that the performance 

spread among them was negligible. This is because RCC 

operates in logical time and most operations advance time 

in lease-sized amounts; therefore choosing a single fixed 

lease merely changes the rate at which logical clocks run 

for everyone. Optimally choosing leases, however, is a non- 

trivial problem for read-write shared data partly because 

the ―correct‖ lease depends on the precise scheduling and 

interleaving of threads; while the correct lease is obvious for 

read-only data (= ), detecting read-only data at runtime 

requires microarchitectural changes [14]. 

Instead, we observe that GPU applications tend to work 

To the best of our knowledge, these kinds of spinlocks are 

not used in GPUs, as most workloads have enough available 

parallelism to cover synchronization delays; spinning merely 

prevents other (potentially more productive) warps from 

executing (in general, synchronization in GPUs requires 

different optimizations than in CPUs [44]). Nevertheless, this 

potential livelock can be avoided by periodically incrementing 

the logical time now (say, by 1 every 10,000 cycles). 

F. RCC-WO: a weakly ordered variant 

Relative load and store ordering is effected through the per- 

core logical time now. Keeping track of two separate logical 

now times — the read view, consulted and updated by load 

operations, and the write view, consulted and updated by store 

operations — allows loads and stores to be reordered with 

respect to each other. In this scheme, full fence operations 

require only that the read view and write view now values 
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be set to whichever is larger; performance can potentially 

improve because stores no longer expire cache data that do 

not have the same block address. The consistency model is 

WO [10]; work concurrent with ours [24] proposes a similar 

adaptation that supports RCsc [11]. 

III. REsULTs and dIscUssIon 

A. Simulation setup 

We follow the methodology used in previous GPU coherence 

work [14, 15]. GPGPUsim 3.x [40] is used to simulate 

the core, and combined with the Ruby memory hierarchy 

simulator from gem5 [47] to execute coherence transactions. 

For the sequentially consistent implementations (MESI, TCS, 

RCC), we altered the shader core model to execute global 

memory instructions sequentially, and stall local memory 

operations if there are outstanding global accesses; this 

matches the ―naïve SC‖ baseline of [14]. We use Garnet [48] 

to simulate the NoC and ORION 2.0 [49] to estimate 

interconnect energy. 

The simulated configuration is similar to NVIDIA’s 

GTX 480 (Fermi [16]), with latencies derived from mi- 

crobenchmark studies [38]; this matches the configurations 

used in prior work [14, 15]. Table III describes the details. 

B. Benchmarks 

We use benchmarks identified and classified into inter- and 

intra-threadblock communication categories in prior work 

on GPU coherence [15]. The intra-threadblock benchmarks 

execute correctly without coherence, but are used to quantify 

the impact of always-on cache coherence on traditional GPU 

workloads. For non-SC simulations, the inter-threadblock 

communication benchmarks rely on fences; for SC simula- 

tions fences act as no-ops in hardware, but were left in the 

sources to prevent the compiler from reordering operations. 

Benchmark details and sources are listed in Table IV. Most 

were used in prior work on GPU coherence [15]; we dropped 

two because our sensitivity studies found them to be highly 

nondeterministic and unpredictably sensitive to small changes 

in architectural parameters (e.g., a few cycles’ change in L2 

latency). We added missing fences to dLB following [9], and 

altered tile dimensions in hsp to match GPU cache block 

sizes and avoid severe false sharing problems. 

C. Results 

RCC significantly reduces SC overheads compared to prior 

SC implementations for GPUs. Fig. 8 (top) shows issue 

stall rates caused by enforcing SC: either direct SC memory 

ordering stalls or LSU pipeline stalls caused by waiting on 

store acknowledgements. RCC reduces these by 52% relative 

to MESI (largely because there are no invalidate delays) 

and by 25% relative to TCS (largely because stores in RCC 

acquire write permissions without stalling). Fig. 8 (bottom) 

shows that SC ordering stalls in RCC are resolved 35% faster 

than in MESI and 11% faster relative to TCS. Both of these 

metrics directly correlate to performance (see below). 

TCW performs better than RCC for Bfs because it benefits 

both from its weak memory model and from relaxing write 

atomicity. All threads share a ―mask‖ vector, which identifies 

nodes to be visited in the next iteration (next level of the 

Bfs tree); TCW allows different cores to modify parts of 

this vector without other cores observing the result, while 

RCC strictly enforces SC on cache block granularity and 

sees more L1 misses (73% vs. 52%). 

Conversely, RCC outperforms TCW on DLB. In DLB, a 

per-threadblock work scheduler that completes its task steals 

tasks from a random other threadblock’s scheduler. Since 

work could be stolen at any time, all per-threadblock queue 

accesses must be protected with fences; fences stall in TCW 

until a physical time when all stores have become globally 

visible. In actuality, however, work stealing events are rare, 

so most of these stalls are unnecessary. RCC allows cores 

to progress independently in their own epochs until actual 

sharing occurs. In addition, stores do not stall even when 

sharing does occur because SC is enforced in logical time. 

SC on top of RCC performs substantially better than 

prior SC proposals for GPUs. Fig. 9a shows that RCC is 76% 

faster than MESI and 29% faster than TCS on workloads 

with inter-workgroup sharing; in fact, performance is within 

7% of TCW, the best prior non-SC proposal. On benchmarks 

with intra-workgroup communication patterns, RCC is 10% 

better than MESI and within 3% of both TCS and TCW. 

Interconnect energy is 45% lower than MESI, 25% lower 

than TCS, and only 7% below TCW on inter-workgroup 

workloads (Fig. 9b); on intra-workgroup programs, it is 25% 

better than MESI and on par with TCS/TCW. This is partly 

due to reductions in traffic (Fig. 9c) and partly due to RCC 

needing only two virtual networks to maintain deadlock-free 

operations vs. five for MESI. Interconnect energy expenditure 

is becoming more important as GPU core counts grow. 

RCC closes the strong–weak ordering gap to 7%. We 

also developed RCC-WO, a weakly ordered variant of RCC 

(Sec. III-F) and compared it with both TCW (our implemen- 

tation supports WO) and the default SC implementation of 

RCC. RCC-WO performs neck-to-neck with TCW, and both 

perform 7% better than RCC-SC. 

One RCC implementation can support strong and 

weak consistency. The microarchitectural differences be- 

tween weak and strong variants of RCC in GPUs consist of 

one additional scheduler signal per warp to order memops 

from one thread, and a small change in how stores update 

L2 metadata. This opens the possibility that the hardware 

memory model in GPUs could be chosen at boot time (as 

in, e.g., SPARCv9 [50]) or even at runtime. 

RCC has fewer states than TCW, TCS, and especially 

MESI (Table V). This is important because coherence is 

notoriously difficult to verify: usually, validation involves very 

simplified formal models and extensive simulations [51, 52], 
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Figure 9.   Performance normalized to a MESI baseline with write-through L1s: (a) speedup, (b) interconnect energy broken down by component, and 
(c) interconnect traffic broken down by message type. Left: workloads with inter-workgroup sharing; right: intra-workgroup sharing. 
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Figure 10. Speedup of weak ordering implementations vs. RCC-SC on inter-workgroup (left) and intra-workgroup (right) workloads. 
 

but bugs survive despite extensive validation efforts [53–56]. 

RCC has reasonable silicon area overheads. For every 

L1 block, RCC only stores exp, and, for every L2 block, 

exp and ver. GPU cache blocks are 128 bytes, with perhaps 

3-byte tags; with 32-bit timestamps this is 3% overhead for 

L1 and 6% area overhead for L2. 

IV. RELaTEd woRk 

GPU memory consistency. Hechtman and Sorin first made 

the case that the performance impact of SC is likely small 

in GPUs [13]. Singh et al [14] observed that, while this was 

true for most workloads, some suffered severe penalties with 

SC because of read-only and private data; they proposed to 

 

 MESI TCS TCW RCC 

L1 states 16 (5+11) 5 (2+3) 5 (2+3) 5 (2+3) 

L1 transitions 81 27 42 33 

L2 states 15 (4+11) 8 (4+4) 8 (4+4) 4 (2+2) 

L2 transitions 50 23 34 14 

Table                                                                                                      V 
RCC has fEwER sTaTEs (sTaBLE+TRansIEnT) and TRansITIons Than oThER 

coMpaRaBLE pRoTocoLs. 

classify these accesses at runtime and permit reordering while 

maintaining SC for read-write shared data. Our approach 

is orthogonal: we focus on SC stall latency, and improve 

performance for both read-write and read-only data. Both [13] 

and [14] used a CPU-like setup with MESI and write-back 

L1 caches. In GPUs, however, write-through L1s perform 

better [15]: GPU L1 caches have very little space per thread, 

so a write-back policy brings infrequently written data into 

the L1 only to write it back soon afterwards. Commercial 

GPUs have write-through L1s [16–18]. Our work studies 

GPU-style write-through L1 caches, and compares against 

the best prior GPU implementation of weak consistency [15]. 

Sinclair et al [57] adapted DeNovo [58] to GPUs with DRF-0 

and HRF variants, and argued that the benefits of HRF over 

DRF-0 do not warrant the additional complexity; DeNovo, 

however, requires software to expose additional details to the 

coherence hardware, while our proposal requires no software 

changes. Others have proposed RC for system coherence in 

CPU-GPU APU systems [13, 59]. 

Strong vs. weak consistency in CPUs. Many quills 

have been sacrificed to argue that sequential consistency 

is desirable in CPUs and propose how it could be efficiently 
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implemented [21, 22, 60–69]. Generally, speculation support 

or other hardware modifications are required to overcome 

the overheads of SC. Lin et al [21] and Gope et al [22] also 

used logical order to enforce SC in a CPU setting. We share 

the conviction that sequential consistency is preferred, but 

focus on GPUs, which have different architectural constraints 

(e.g., no speculation support). 

GPU coherence. Singh et al [15] proposed a GPU 

coherence protocol based on physical timestamps, and showed 

that MESI and write-back caches suffered NoC traffic and 

performance penalties in GPUs. While the consistency model 

is weak throughout, the base version (TCS) can support SC 

if the core does not permit multiple outstanding memory 

operations from one warp; we use this SC variant as 

a baseline. The improved version (TCW) cannot support 

SC, but adds offers 30% better performance; we use this 

for comparison. RCC uses logical rather than physical 

timestamps, has lower complexity, and closes the SC-to-weak 

gap between TCS and TCW. 

Library cache coherence. Nandy and Narayan [70] first 

observed that timestamps can reduce interconnect traffic 

due to invalidate messages in MSI-like protocols, but their 

protocol did not support SC. Shim et al [35] proposed LCC, a 

sequentially consistent library protocol, for multicores; LCC 

is equivalent to our TCS baseline. Singh et al [15] adapted 

LCC to GPUs and proposed a higher-performance weakly 

ordered variant with a novel fence completion mechanism; 

Kumar et al [36] used TCW for FPGA accelerators. Recently, 

Yao et al [71] adapted TCW to multicores by tracking writes 

with a Bloom filter. All of these protocols use physical 

timestamps, and SC variants must stall stores (and weak 

variants must stall fences) until completion; RCC uses logical 

time and stalls neither stores nor fences. 

Lamport [20] first observed that consistency need only be 

maintained in logical time. This fact has been used to im- 

plement coherence on a logically ordered bus (e.g., [72, 73]) 

and to extend snooping coherence protocols to non-bus 

interconnects [74, 75]. Meixner and Sorin used logical 

timestamps to dynamically verify consistency models [31]. 

Yu et al [23] proposed using logical timestamps to directly 

implement coherence in CPU-style multicores, but maintains 

exclusive write states and recall/downgrade messages that 

we wish to avoid to reduce store latencies. At the same time, 

architectural features not present on GPUs (e.g., speculative 

execution) are required to support a timestamp speculation 

scheme. Work concurrent with ours [24] proposes non-SC 

variants. RCC shares the notion of keeping coherence with 

logical timestamps, but eschews exclusive states to focus on 

reducing store latencies. RCC is a simpler protocol that offers 

best-in-class performance in GPUs. 

V. ConcLUsIon 

In this paper we track the source of SC inefficiency in GPUs 

to long store latencies caused by coherence traffic; these 

severely exacerbate SC ordering and structural bottlenecks 

that GPUs could otherwise easily amortize. We address these 

by proposing RCC, a coherence protocol that uses logical 

timestamps to reduce store latency. When used as part of 

an SC implementation, RCC reduces SC-related stalls by 

25%, and stall resolve latency by 11%, compared to the best 

coherence proposal for GPUs capable of supporting SC; as 

a result, performance is 29% better. 

When used in RC mode, RCC matches the best prior RC 

proposal; because the hardware needed for RCC is similar 

for SC and RC, a single implementation can potentially allow 

runtime selection of the desired memory consistency model. 
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