
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

182

average latency of:
loads stores

On GPUs, Effective Sequential Consistency is Achieved

via Relativistic Cache Coherence.

Mr. Gopal Behera
1
*, Dr. Dhaneswar Parida

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 gopalbehera@thenalanda.com*, dhaneswarparida@thenalanda.com

Abstract— Recent research has suggested that sequential
consistency (SC) in GPUs can match weak memory models as
long as ordering stalls are reduced by loosening ordering for
read-only and private data. In this study, we tackle the related
issue of stall latencies reduction for read-only and read-write
data.

We find that SC stalls, which mostly result from previous
stores in the same thread, are problematic for work-loads
involving inter-workgroup sharing. This overhead is further
increased by the requirement to stall while requesting write
rights (to ensure write atomicity). To solve this, we suggest
RCC, a GPU coherence mechanism that still permits SC
implementation while granting write permissions without
stalling. Even though each core may view different global
memory orders and L1 read permissions, RCC uses logical
timestamps to make these determinations.

(a)

(b)

(c)

(d)

100%
80%
60%
40%
20%
0%

100%
80%
60%
40%
20%
0%

3000

2000

1000

0

4×
3×
2×
1×
0×

BH BFS CL DLB STN VPR HSP KMN LPS NDL SR LUD

a different logical ―time,‖ SC ordering can still be maintained.
Our concept does not call for significant core modifications or
additional per-core storage to categorise read-only/private

data, in contrast to earlier GPU SC suggestions. Within 7% of
the best non-SC architecture, total performance for workloads
including inter-workgroup sharing is 29% higher and energy

consumption is 25% lower than in the best previous GPU SC
designs.

INTRODUCTION

Modern processors and GPUs can support multiple inflight

memory requests not only from different cores but also from

independent instructions in the same thread. This can result

in memory operations appearing to execute out of order: two

cores — or even two instructions in the same thread — could

potentially observe memory writes in different order, leading

to difficult-to-debug synchronization bugs. To constrain the

range of allowable behaviour, processors and programming

languages define memory models, which specify precisely

which writes a memory read may observe.

Sequential consistency (SC) — the most intuitive model

— requires that (a) all memory accesses appear to execute

in program order and (b) all threads observe writes in the

same sequence [1]. To ensure in-order load/store execution,

a thread must delay issuing some memory operations until

preceding writes complete; we refer to these delays as SC

stalls. Moreover, since all cores must observe writes in the

same order, stores cannot complete until they are guaranteed to

be visible to all other threads and cores. Because of these

restrictions, few modern commercial CPUs have supported SC

[2]; typically SC is relaxed to permit limited [3, 4] or near-

arbitrary reordering [5–8]; programmers must then insert memory

fences for specific memory operations, in essence manually

reintroducing SC stalls. GPUs manufacturers have followed

suit: both NVidia and AMD GPUs exhibit weak

inter-workgroup sharing intra-workgroup sharing

%
 s

ta
ll
s
 d

u
e

 t
o

 %
 m

e
m

 o
p

s

p
re

v
.

s
to

re

w
/

S
C

 s
ta

ll
S

C
-I

D
E

A
L

la

te
n

c
y

s
p

e
e

d
u

p

c
y
c
le

s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

183

Figure 1. SC stalls are (a) infrequent, but (b) mostly due to preceding
stores; (c) average store latencies are much longer than load latencies;
(d) zero invalidate latency leads to substantial speedup for inter-
workgroup sharing workloads.

consistency [9] similar to WO [10] or RC [11] models.

Correctly inserting fences is difficult, however,

especially in GPUs where all practical programs are

concurrent and performance-sensitive. The authors of [9]

found missing fences in a variety of peer-reviewed

publications, and even vendor guides [12]. Such bugs are

very difficult to detect: some occurred in as few as 4

out of 100,000 executions in real hardware, and most

occurred in fewer than 1% of executions [9]. Code

fenced properly for a specific GPU may not even work

correctly on other GPUs from the same vendor: some of

these bugs were observable in Fermi and Kepler but not

in older or newer microarchitectures [9].

SC hardware is desirable, then, if it can be

implemented without significant performance loss.

Recent work [13, 14] has argued that this is possible in

GPUs: unlike CPUs, which lack enough instruction-

level parallelism (ILP) to cover the additional latency of

SC stalls, GPUs can leverage abundant thread-level

parallelism (TLP) to cover most SC stalls. The authors

of [14] propose reducing the frequency of the remaining

SC stalls by relaxing SC for read-only and private data;

classifying these at runtime, however, requires complex

changes to GPU core microarchitecture and carries an

area overhead in devices where silicon is already at

a premium. Moreover, both studies focused on SC built

using CPU coherence protocols (MOESI and MESI) with

write-back L1 caches. In GPUs, however, write-through

L1s perform better [15]: GPU L1 caches have very little

space per thread, so a write-back policy brings

infrequently written data into the L1 only to write it back

soon afterwards. Commercial

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

184

core 1

× ×

×

GPUs have write-through L1s and require bypassing/flushing

L1 caches to ensure intra-GPU coherence [16–18].1 Compared

to the best GPU relaxed consistency design, the performance

L2

core 0

cost of implementing SC appears to be closer to 30% [15].

To trace the roots of this performance loss, we evaluated

an SC implementation similar to prior work [13, 14] but

with GPU-style write-through L1 caches (see Sec. IV-A for

simulation setup). We examined memory-intensive workloads

with and without inter-workgroup sharing previously used

core 2

core 3

ST A

to evaluate GPU cache coherence [15]; the inter-workgroup

benchmarks rely on inter-core coherence traffic, while the

intra-workgroup benchmarks communicate only within each

GPU core. We found SC stalls to be relatively infrequent

(Fig 1a): in only one case were more than 20% memory

operations ever stalled because of SC; this supports prior

arguments [13] that the massive parallelism available in GPUs

can cover most ordering stalls introduced by SC.

We next examined the cause of each stall — i.e., the type

of the preceding memory operation from the same thread.

Fig. 1b shows that most SC stall cycles are spent waiting for

a previous store (or atomic) instruction to complete; indeed,

in most cases, nearly all stall delays are due to waiting for

prior writes. This is because average store latencies are very

long: for workloads with inter-threadblock communication,

store latencies are often much longer than load latencies

(2.4 gmean), and up to 3.7 longer (Fig. 1c).

This makes sense: to maintain SC, each store must receive

an ack before completing to ensure that the new value

has become visible to all cores. There are two parts to

this latency: one — the round-trip to L2 — is unavoidable

with the write-through L1 caches found in GPUs. The other

part is ensuring exclusive coherence permissions: in our

MESI-based experiment the write waits until other sharers

have invalidated their copies, while in timestamp-based GPU

coherence protocols like TC-sTRong [15] the store waits

for all read leases to expire. Long-latency stores can affect

performance not only by delaying SC stall resolution, but

also by occupying buffer space or stalling same-cacheline

stores from other threads in MSHRs until the ack is received.

To find out whether coherence delays are significant, we

implemented an idealized variant of SC where acquiring

read and write permissions is instant (SC-IdEaL). Fig. 1d

Figure 2. Enforcing SC in logical time. Logical time increases left to right;
all cores that observe the new value of A must advance their logical times
past that of the store.

ically [21, 22], and the recent insight that logical timestamps

can be used directly to implement a coherence protocol [23].

We propose Relativistic Cache Coherence (RCC), a simple,

two-state GPU coherence protocol where each core maintains

— and independently advances — its own logical time. The

L2 keeps track of the last logical write time for each cache

block; whenever a core accesses the L2, it must ensure that

its own logical time exceeds the last write time of the relevant

block. Data may be cached in L1s for a limited (logical) time,

after which the block self-invalidates.

Fig. 2 shows how RCC maintains SC in logical time. First,

core 0 loads address A, and receives a fixed-time lease for

A from the L2, which records the lease duration; core 0

may then read its L1 copy until its logical time exceeds the

lease expiration time. Core 1 writes to A, but to do this it

must advance its own logical time to past the lease given out

for A; this step (dashed line) is equivalent to establishing

write permissions in other protocols, but occurs instantly in

RCC. Core 2 loads A from L2 and advances its logical time

past the time of core 1’s write. Finally, core 3 also reads

A. The load is logically before the store to A (because core

3’s logical clock is earlier than A’s), but physically the write

to A has already happened, and only the new value of A is

available at the L2. Core 3 thus receives the new value of A,

but must also advance its logical time to that of A’s write.

Naturally, the cost of synchronization does not entirely

disappear: advancing a core’s logical time may cause other

L1 cache blocks to expire. In essence, we are exchanging

a reduction in store latency for A for potentially some

additional L1 misses on other addresses. While this would be
shows the speedup of SC-IdEaL over realistic SC: for problematic for latency-sensitive CPUs, throughput-focused
workloads with inter-workgroup sharing, idealizing coherence

yields a substantial performance improvement (1.6 gmean);

workloads with only intra-workgroup sharing see no benefit.

To address this, we leverage Lamport’s observation that

ordering constraints need to be maintained only in logical

time [20], prior observations that SC can be maintained log-

1GPU vendor literature and some prior work use ―coherence‖ to describe

automatic page-granularity data transfer between the host CPU and the
GPU’s shared L2; some academic proposals use ―system coherence‖ for the
same concept [19]. To the best of our knowledge, no existing GPU product
implements hardware-level intra-GPU coherence.

GPUs were explicitly designed to amortize this kind of cost;

we will show that in GPUs this tradeoff is worth making.

Lamport’s logical time has recently been proposed as

a coherence mechanism for CPUs [23, 24]. Performance,

however, was subpar even compared to the much simpler

MSI protocol, even though the proposed protocol was more

complex than RCC and relied on a complex speculation-and-

rollback mechanism. RCC is not only much simpler, but

actually outperforms the best existing GPU protocols.

In the rest of this paper, we describe RCC and demonstrate

old value valid new value valid

L1 copy valid

LD A

L1 copy valid

LD A

L1 copy valid

LD A

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

185

how it addresses the store latency and SC stall problems

identified above. In contrast with prior GPU SC work [14],

RCC does not explicitly classify read-only/private data:

instead, a predictor naturally learns to assign short cache

lifetimes to frequently written shared data. Unlike prior GPU

coherence work [15], RCC operates in logical time; as a

result, stores acquire write permissions instantly but still

maintain SC. RCC underpins a sequentially coherent GPU

memory system that outperforms all previous proposals and

closes the gap between SC and weak consistency in GPUs.

The contributions of our work are:

• we trace the cost of SC overheads in realistic GPUs to

the need to acquire write permissions for shared data;

• we propose RCC, a simple two-state GPU coherence

protocol that significantly improves store performance;

• we demonstrate that an SC implementation using RCC

significantly reduces SC stall rates and resolve latencies,

and outperforms the best prior GPU proposal by 29%;

• we close the performance gap between best SC and

weak consistency proposals for GPUs to within 7%.

I. BackgRoUnd

A. Consistency and coherence

Consistency. A memory consistency model defines which

sequences of values may be legally returned from the

sequence of load operations in each program thread. For

example, the following code snippet from [25] represents

a common synchronization pattern found in many inter-

workgroup sharing workloads (e.g., work queues in dLB):

The question is, should core C1 be allowed to see done=true

even if data=old? This is clearly not the intended behaviour,

since C1 could see a stale copy of data; nevertheless, it is

allowed by many commercial CPUs and all extant GPUs [9].

Sequential Consistency [1] most closely corresponds to

most programmers’ intuition: it requires that (a) memory

operations appear to execute and complete in program order,

and (b) all threads observe stores in the same global sequence.

In SC, an execution where done=true when data=old is

illegal because either (a) the writes to data and done were

executed out of order by core C0, or (b) they were executed

in one order by C0 but observed in a different order by C1.

Weak consistency models, on the other hand, allow near-

unrestricted reordering of loads and stores in the program,

provided that data dependencies are respected; such reorder-

ing typically occurs during compilation and during execution

in the processor. Special memory fence instructions must be

used to restrict reordering and restore sequentially consistent

behaviour: in the example above, a fence is needed to ensure

that the store to data completes before the store to done. As

discussed in Sec. I, missing fences can be very difficult to find

in a massively multithreaded setting like a GPU; conversely,

adding too many fences compromises performance.

Since compilers can reorder or elide memory references

(e.g., via register allocation), a programming language must

also define a memory model. Due to the range of consistency

models present in extant CPUs, languages like Java [26] or

C++ [27] guarantee sequentially consistent semantics only for

programs that are data-race-free (i.e., properly synchronized

and fenced); this is known as DRF-0 [28]. The HRF model

recently proposed for hybrid CPU/GPU architectures further

constrains DRF-0 by requiring proper scoping [29].

Coherence. In systems with private caches, a cache

coherence protocol ensures that writes to a single location are

ordered and become visible in the same order to all cores [30];

the aim is to make caches logically transparent. Since caches

are ubiquitous, providing coherence is a fundamental part of

implementing any memory consistency model.

Not all coherence protocols can support SC. The best

prior GPU coherence protocol TC-wEak [15] allows stores to

proceed without exclusive write permissions (unless properly

fenced); while this yields a 30% performance improvement, it

compromises write atomicity, which is necessary for SC [31].

RCC performs close to TC-wEak without giving up SC.

B. GPUs vs. CPUs: a consistency and coherence perspective

Consistency. Modern multicore CPUs have largely settled

on weak memory models to enable reordering in-flight

memory operations [3–7]: because CPUs support at most a

few hardware threads, the memory-level parallelism (MLP)

obtained from reordering memory operations is key to

performance. GPUs, on the other hand, buffer many tens of

warps (e.g., 48–64 [16–18]) of 32–64 threads in each GPU

core (SM), and when one warp is stalled (because of an L1

cache miss, for example), the core simply executes another.

With fine-grained multithreading, GPUs can amortize

hundreds of cycles of latency without reordering memory

operations; recent work [13, 14] has suggested that the same

mechanism can cover the ordering stalls required by SC.

Indeed, hardware techniques that reorder accesses — such

as store buffers — are either too expensive or ineffective in

GPUs, so leaving them out does not hurt performance [14].

Coherence. CPU caches are generally kept coherent by

tracking each block’s sharers and invalidating all copies

before writing the block. Most protocols in commercial

products are quite similar: they have slightly different states

(MESI, MESIF, MOESI, etc.) or sharer tracking methods, but

the basic operation relies on request-reply communication

between cores and an ordering point such as a directory.

All commercial GPUs we are aware of lack automatic

coherence among private L1 caches: in GPU vendor literature,

―coherence‖ refers only to the boundary between the host CPU

core C0

data = new
done = true

weakly ordered models

need a memory fence here

core C1

while (!done) {
} // wait for new data value

. . . use new data. . .

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

186

 MESI TCS TCW RCC

SC support? yes yes no yes

stall-free

store per-

missions?

no

(invalidate

sharers)

no (wait

until lease

expires)

yes (but

stall for

fences)

yes

Table I
SC and cohEREncE pRoTocoL pRoposaLs foR GPUs

and the GPU. NVidia Pascal allows the GPU to initiate page

faults and synchronize GPU and CPU memory spaces [32],

but intra-GPU coherence requires bypassing the L1 caches [9].

AMD Kaveri APUs bypass and flush the L1 cache for intra-

GPU coherence, and bypass the L2 for CPU-GPU sharing

[33]. Details for ARM MALI GPUs are scant, but it appears

that the coherence boundary terminates at the GPU shared

L2 cache and does not include the L1s [34].

Efficient intra-GPU coherence implementations are subject

to different constraints than CPUs. GPUs have 15, 32, or even

56 SM cores [16–18, 32], simultaneously executing around

100,000 threads. While some prior studies [13, 14] (and our

motivation study in Sec. I) have assumed CPU-like MESI

coherence, a realistic implementation could face simultaneous

coherence requests from tens of thousands of threads; just

the buffering requirements would be prohibitive [15].

The only other coherence protocol proposed for GPUs

leveraged two observations: (a) that write-through caches

provide a natural ordering point at the L2, and (b) that inter-

core synchronization can be implicit via a shared on-chip

clock [15]. A cache that requests read permissions receives

a read-only copy with a limited-time lease; this copy may

be read until the shared clock has ticked past the lease time.

Two protocols are proposed: TC-sTRong (TCS) can support

SC if the core does not reorder accesses, but stalls stores at

the L2 to ensure that all leases for the address have expired;

TC-wEak (TCW) allows stores to proceed without stalling,

but compromises write atomicity and cannot support SC.

In the next section, we describe Relativistic Cache Coher-

ence, a new GPU coherence protocol that supports SC (like

TCS) but allows stores to execute without waiting for write

permissions (like TCW). Table I compares RCC with prior

protocols proposed for GPUs in the context of SC.

II. RELaTIvIsTIc CachE CohEREncE

Relativistic Cache Coherence leverages the observation by

Lamport [20] that consistency need only be maintained in

logical time. Two threads may see the memory as it was at

two different logical times, as long as each only observes

all writes logically before — and never sees any writes

logically after — its own logical ―now.‖ In RCC, cores

maintain separate logical times, which become synchronized

only when read-write data is shared.

Like all library coherence protocols [15, 23, 24, 35, 36],

RCC allows L1 caches to keep private copies of data only for

limited-time ―leases‖ granted for each requested block; when

a lease expires, the block self-invalidates in L1 without the

need for any coherence traffic. Writes to a block must ensure

that no valid copies are present in any L1s by ensuring that

the write time exceeds the expiration time of all outstanding

leases. In RCC, leases are granted and maintained in logical

time, so writes can complete instantly by advancing the

writing core’s logical clock.

A. Logical clocks, versions, and leases

In relativistic coherence, each core maintains, and indepen-

dently advances, its own logical clock (now). Similarly, each

shared cache (L2) block maintains it own logical version

(ver), equal to the logical time of the last write to this block.

Since the L2 grants per-block read leases to private L1

caches, it keeps track of when the last lease for a given block

will expire (exp). Each L1 cache also keeps track of the exp

it was given by the L2. Different L1s may have different

exps for the same block, but none will exceed the latest exp

in L2. Because L1s are write-through, they do not need to

record ver for each block.

A unique, global SC ordering of memory accesses is

maintained in logical time by applying three rules:

1) Core C reading cache block B must advance its logical

time now to match B’s current version ver if B.ver >
C.now. This ensures that C cannot use B to compute

new data values with logical times < B.ver, i.e., that C
does not observe a value of B ―from the future.‖

2) Core C writing cache block B must advance B’s ver to

C’s now if B.ver < C.now, and advance its own now to

B’s ver if B.ver > C.now. This ensures the new value

of B cannot be used for computation in cores whose

now is earlier, i.e., that B is not ―sent back in time.‖

3) Core C writing cache block B must advance its now

as well as the new B.ver beyond the expiration time

exp of the last outstanding lease for B. This ensures

that the new value of B does not ―leak:‖ i.e., that any

values computed from the new value of B by other cores

cannot coexist in their L1s with the old value of B.

The logical now times of memory operations provide a

sequentially consistent ordering. Provided the core scheduler

is modified to ensure that only one global memory access

per warp is issued at any given time, RCC supports SC.2

B. Example walkthrough

Fig. 3 shows how RCC operates on a sequence of instructions

from two different cores. Initially, C0’s cache has neither

A and B (since now > exp) and core C1 has both. In the

shared L2 cache, B has since been written by a third core

and has ver = 30; because C1’s now has not advanced past

10, however, it may still read its cached copy of B.

2The proof that RCC supports SC is essentially the same as for Tardis [37],

we refer the interested reader there. The main difference is that RCC permits
a sequence of unobserved stores to share the same logical version; the SC
ordering in that case is provided by the physical arrival times at the L2.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

187

core
C0 C1

C0
L1 cache

C1
L1 cache

shared

L2 cache
C0: A

C0: B

C1: A

C1: B

= cached
 = invalid

or expired

= now @ C0

= now @ C1

Figure 3. RCC executing accesses to two addresses (A and B) from two cores (C0 and C1). The table (left) tracks each core’s logical time (now), and each
cache block’s version (ver) and read lease expiration (exp) after each instruction has executed; the rows represent the order of instructions as executed in
physical time. The diagram (right) illustrates the lease durations in each cache (top) and how the logical time now advances in each core as the corresponding
operations from the table execute (bottom); logical time flows left to right while physical time flows top to bottom. Bold values denote changes since the
last step; crossed-out leases have expired.

First, core C0 writes A, which updates the A.ver in the L2

(rule 2); C1 still has now = 0 and can read its old copy of A.

C0 then reads B, which receives a new lease (until logical

time 40) but must advance its now past B.ver (rule 1).

Next, C1 writes B, which updates B.ver and C1.now to

41, past the last outstanding lease for B (rule 3). This step

enforces SC ordering between the two cores: C1 next reads

A, and is forced to pick up the value written by C0.

Finally, C0 writes B, advancing its now past the

previous write to B (rule 2), and then A, advancing past

the last lease for A (rule 3). Because C1.now is earlier,

however, C1’s next load will happen logically before C0’s

write to A, and will not observe the new value. Note

that SC has been maintained, as the overall behaviour

is explained by the following sequential interleaving:

C0: ST A, LD B; C1: ST B, LD A, LD A; C0: ST B, ST A.

L1 FSM

L2 FSM

LD
ST
AT

stable
state

transient
state

LD = load
ST = store
AT = atomic

C. Coherence protocol: states and transitions

The full state transition diagram for RCC, including both

stable and transient states, is shown in Fig. 4.

Stable states. RCC has two stable states: V (vaLId) and

I (InvaLId). Blocks loaded into the L1 transition to the V

state, and may be read until they are evicted, written, or until

their leases expire, at which point they self-invalidate and

transition to the I state. Stores (and atomic read-modify-write

operations) may occur in both V and I states; the request is

forwarded to the L2 (GPU L1s are write-through, write-no-

allocate), and the block eventually transitions to I after the

store ack is received. Expired blocks in V state (exp < now)

are treated exactly the same way as blocks in I state for

memory operations and cache replacement purposes.

The L2 also only has V and I states. L2 misses retrieve

the value from memory and transition to V. Because the L2

is write-back (like in commercial GPUs), the V state allows

reads, writes, and atomic operations; a block transitions to I

only when evicted by the L2 cache replacement algorithm.

Transient states. L1 blocks also have three transient states:

Figure 4. Full L1 and L2 coherence FSMs (stable and transient states).

IV, II, and VI; the first two are required for correctness, while

the third is a GPU-specific optimization.

IV indicates that a load request missed in the L1 and a gETs

request has been sent; further load requests for the same

cache block will be stored in the MSHR without more

gETs requests, and the block will transition to V once

the daTa response has been received. Stores received

while in IV state cause a transition to II.

II indicates that a store (or atomic) request has been sent

to the L2, and the cache is waiting for an ack message

with the logical time at which the write was executed

(i.e., the new ver); this is necessary to maintain SC.

While in II state, any daTa response from the L2 will

be forwarded to the core, but the block will stay in II.

VI is an optimization of the II state when the block was

valid before the write; in VI, the block can still be read

by other warps until the ack message with the new

ver is received from the L2 cache; this is important in

GPUs because round-trip access latencies to L2 can be

IV

V I

LD

VI ST
AT

LD
ST
AT

II

IV

V evict I

IAV

B (old)

A (old) A (new)

B (new)

memory op now A.exp B.exp now A.exp B.exp A.ver A.exp B.ver B.exp

— — 20 10 10 0 10 10 0 10 30 10

ST A — 20 10 10 0 10 10 20 10 30 10

LD B — 30 10 40 0 10 10 20 10 30 40

— ST B 30 10 40 41 10 10 20 10 41 40

— LD A 30 10 40 41 51 10 20 51 41 40

ST B — 41 10 40 41 51 10 20 51 41 40

ST A — 52 10 40 41 51 10 52 51 41 40

— LD A 52 10 40 41 51 10 52 51 41 40

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

188

≥

hundreds of cycles [38].

To permit non-blocking misses, the L2 coherence controller

has two transient states:

IV buffers new gETs and wRITE requests in the relevant

MSHR, keeping track of the maximum now times from

the reading and writing processors. Once the data arrives

from DRAM, the block’s version is updated to reflect

any writes in the MSHR and a new lease is generated

to satisfy any readers.

IAV indicates an aToMIc operation received in an invalid

state; this stalls any further L1 requests until the block

has been retrieved from DRAM, its version has been

established, and the atomic operation has completed.

Fig. 5 shows the complete state transition table, including

the generated messages and MSHR management details.

RCC has fewer states and transitions than prior art. Earlier

logical timestamp coherence work [23] requires three stable

states each for L1 and L2 (transient states are not described),

as well as MESI-like recall and downgrade mechanisms

to implement a private writeable state; such inter-core

communication is precisely the source of the SC store

latencies we wish to avoid. Prior GPU coherence work also

has more states (13 total) and transitions than RCC. In the SC-

capable variant, a private state is used to avoid store stalls for

private data; in the weakly ordered version, non-fenced stores

do not stall but SC support is not possible. RCC employs

logical timestamps to acquire store permissions instantly, and

does not require private or exclusive states.

D. L2 evictions and timestamp rollover

Table II lists all timestamps maintained in RCC and their

semantics. Core logical clock now, data write version ver,

and lease expiration time exp were described in Sec III-A.

L2 evictions. Because data copies in L1 automatically

expire, RCC allows caches to be non-inclusive without

RCC instead allows the eviction but ensures that, if the

block is reloaded from DRAM, reading or writing it will

cause any outstanding leases for it to expire. To enforce

this, we could keep track of ver and exp for each block in

DRAM, but this would require additional storage provisions

in main memory. Instead, we store the maximum ver or exp

of any evicted block as the ―memory time‖ mnow, one in

each memory partition. To maintain logical ordering, a block

loaded from DRAM will have its ver and exp set to mnow:

any cores that read or write this block will have to advance

their logical time to prevent the issue described above.

Since the L2 is write-back (like in extant GPUs [16–18]),

a wRITE request that misses in L2 will be stored in MSHR

while the block is set to IV state and retrieved from DRAM,

and any additional write requests are merged into the MSHR.

To maintain correct logical write ordering, each MSHR keeps

track of lastwr, the highest write time (originating core now

value) of any wRITE requests received in IV state. WRITE

requests with now lastwr update the MSHR data and lastwr;

write requests with now < lastwr do not change lastwr but

must be tracked until the final write time is known. The

larger of lastwr and mnow will become the block’s ver; since

this is the logical write time, the store can be acknowledged

without waiting for the DRAM response. The store data will

remain in the MSHR until the DRAM response arrives.

A similar case arises for read requests that miss in L2.

MSHRs keep track of lastrd, the latest now of any reading

cores; this is used to calculate the lease expiration (exp) once

the block is available, and can be elided to save space (lastwr

would be used instead).

Timestamp rollover. Because timestamps have finite

exact representations and keep increasing, they are subject

to arithmetic rollover. In our experiments, 32-bit logical

timestamps advanced on average once for every 1073 core

clock cycles; this corresponds to approximately one rollover

per hour at clock speeds found in high-performance GPUs.
requiring the usual REcaLL messages, as in prior GPU In principle, this can be handled simply by setting core

coherence work [15]. Care must be taken, however, to

maintain logical ordering when evicting blocks from L2:

if a block were naïvely evicted and then re-fetched without

preserving its ver and exp, it could then be read logically

before it was written, or could be written before all leases

expire. Singh et al [15] handle this by using an MSHR entry

to store the evicted block until the timestamp expires, which

limits the number of MSHR entries available for L2 misses.

name granularity semantics

now GPU core logical time seen by this core

exp cache block lease expiration time

ver cache block data version (last write time)

mnow mem. partition max(exp,ver) evicted to DRAM

lastrd L2 MSHR latest now of any reading core

lastwr L2 MSHR latest now of any writing core

Table II
TIMEsTaMps UsEd In RCC

now clocks to 0, flushing all L1s, setting all L2 ver and exp

entries to 0, and setting all mnow values to 0; SRAMs that

support flash-clearing [39] make this easy. However, rollover

must be processed atomically in the presence of in-flight

messages, transient cache states, and independent L2 banks.

To implement this correctly, we observe that the L2 is the

only coherence actor that actually increases timestamps (L1s

only copy timestamps received from L2); therefore, the L2

will be the first component to know that rollover is required.

When an L2 partition needs to roll over a timestamp, it

first ensures that all other L2 partitions have stalled and

set their timestamps to 0. This can be done in many ways,

perhaps using a narrow unidirectional ring with the rollover

L2 partition sending a sTaLL flit and all other cores stalling

before allowing the flit to continue; when sTaLL returns to

the originating core, all cores will have stalled (in case of

concurrent stall requests, lowest L2 partition ID wins). All

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

189

Figure 5. L1 (left) and L2 (right) state transition tables for RCC. D is the cache block (e.g., D.exp is the expiration time for the block), M represents a

received message (e.g., M.ver in an ACK indicates the time when a write will become visible). Arrows signify state transitions. V and I are stable states;
IV, VI, II (L1 only) and IAV (L2 only) are transient states. Braces denote coherence message contents; cache block data are included as appropriate. Shaded
areas highlight protocol changes required for lease extensions.

100%

75%

50%

25%

0%

100%

50%

0%

BH BFS CL DLB STN VPRAVG BH BFS CL DLB STN VPRAVG

100%

50%

0%

BH BFS CL DLB STN VPRAVG

1.0

0.5

0.0

BH BFS CL DLB STN VPR GM

Figure 6. Left: fraction of loads that find data in V state but expired
(either for coherence reasons or prematurely); expiration rate is negligible
for intra-workgroup benchmarks. Right: Fraction of expired loads whose
blocks that have not changed in L2 (and can be renewed).

stalling partitions must set all of their timestamps (including
lastwr and lastrd) to 0; queued requests and MSHR entries

Figure 7. Left: interconnect traffic with (+R) and without (–R) the renew
mechanism. Right: reduction in reads that find expired data in L1, with (+P)
and without (–P) the lease predictor mechanism.

assignment. Fig. 6 (right) shows that most such expirations

are premature (i.e., the block’s L2 entry has not changed).

are retained, with all timestamps reset to 0. The rollover Lease extension. Every such block generates a gETs

partition then sends a fLUsh request to all L1s, and waits for

responses from all; once these have been received, a REsUME

flit is sent on the inter-partition ring, and all L2 partitions

resume processing requests. An L1 that receives a fLUsh

request sets its now to 0 and invalidates all entries before

replying to L2; addresses with MSHR entries enter the II

state, while the remaining addresses transition to I.

E. Lease times, extension, and prediction

When the L2 receives a gETs request, it generates a read lease

for the block and sends the logical expiration time exp back to

the requesting L1. So far, we have assumed all leases have the

same duration (of 10 in Sec. III-B); intuitively, however, read-

only data should receive very long leases to avoid expiration,

whereas data shared frequently should receive short leases

to avoid advancing the logical time too much when they are

written (and thus causing other cache blocks to expire).

When a lease is too short, a load request finds the L1 block

in V state but with an expired lease (now > exp). Fig. 6 (left)

shows how many L1 cache blocks are in V state but expired

when accessed. Sometimes, this is the coherence protocol

working as intended and indicates a transitive logically-before

relation; at other times, the expiration reflects imperfect lease

request and a daTa response from the L2. While the gETs is

small, a daTa response includes the full cache block, which

poses an unnecessary traffic overhead.

Since the L2 knows when the block was last written (ver),

it could potentially renew the lease by sending the new lease

expiration time but no data (which the L1 already has). Before

deciding whether to send REnEw or the full daTa, the L2

needs to know whether the L1’s previous lease is older than

ver; if it is, the L1 may have incorrect data. To provide this

information, we modify gETs requests to carry the exp time

of the expired lease (tracked by the L1): if this is newer than

the data version ver in the L2, a REnEw grant can be sent.

The required protocol changes are shaded in Figure 5; note

that the complexity cost is minimal, with no additional states

and only two new transitions. Prior work [23] also features a

lease extension mechanism, but the renew mechanism there

relies on keeping track of data versions ver in the L1 caches.

Fig. 7 (left) shows that the renewal mechanism is ef-

fective in reducing interconnect traffic for inter-workgroup

sharing workloads by 15% (traffic is also reduced for the

intra-workgroup benchmarks, but their expiration rates are

negligible to begin with).

Lease prediction. Although lease extension reduces inter-

connect traffic, many expirations would not occur to begin

L1

state

requests from processor core L1 events

load store atomic evict expiry DATA

I GETS WRITE ATOMIC — — —

L2 responses

RENEW

—

L2

state

ACK

—

I

{now = L1.now, {now = L1.now} {now = L1.now}

requests from L1

GETS WRITE

DRAM FETCH DRAM FETCH

MSHR.lastrd = M.now MSHR.lastwr = M.now

 IV  IV

ATOMIC

DRAM FETCH

MSHR.lastwr = M.now

 IAV

L2 events

evict

—

memory responses

DATA

—

 exp = D.exp}  II

 IV

 II
V D.exp = D.ver =

V cache

hit
WRITE ATOMIC  I  I — — —

{now = L1.now} {now = L1.now}

 VI  VI

D.ver =

max(M.now, D.ver,

D.exp+1)
DATA {exp = D.exp,

ver = D.ver}

IV add to

MSHR
WRITE ATOMIC stall —

mnow =

max(mnow,

D.exp,

D.ver)

dirty?

WBACK

 I

—

max(D.exp, D.ver+lease, max(M.now, D.ver,

 II  II

L1.now = max(L1.now, M.ver)

D.exp = M.exp

 V

D.exp =

M.exp

 V

—

{now = L1.now} {now = L1.now}

IV

GETS WRITE ATOMIC stall —

{now = L1.now, {now = L1.now} {now = L1.now}

 exp = D.exp}

L1.now = max(L1.now, M.ver) D.exp = L1.now =

read resp? D.exp = M.exp M.exp max(L1.now, M.ver)

MSHR.empty?  V, else  VI  VI

atomic resp?

MSHR.empty?  I, else  II

M.now+lease) D.exp+1)

M.exp > D.ver? ACK {ver = D.ver}

RENEW {exp=D.exp}

else
DATA {exp = D.exp,

ver = D.ver}

add to MSHR

MSHR.lastrd =

max(MSHR.lastrd,

M.now)

MSHR.empty?  I

write to MSHR

MSHR.lastwr =

max(MSHR.lastwr,

M.now)

ACK

{ver = max(MSHR.lastwr,

mnow)}

stall stall

II

VI cache

hit
WRITE ATOMIC stall  II L1.now = max(L1.now, M.ver)

read resp? D.exp = M.exp

MSHR.empty?  V, else  VI

atomic resp?

MSHR.empty?  I, else  II

—

{now = L1.now} {now = L1.now}

L1.now =

max(L1.now, M.ver)

IAV stall stall stall stall
MSHR.empty?  I

else  II

D.exp = D.ver = mnow

MSHR.haswrite?

D.ver = max(MSHR.lastwr, mnow)
MSHR.hasread?

D.exp = max(D.ver+lease,

MSHR.lastrd+lease)
DATA {exp = D.exp, ver = D.ver}

 V

D.exp = mnow,
D.ver = max(MSHR.lastwr, mnow)

DATA {exp=D.ver, ver = D.ver}  V

–R

+
R

–R

+
R

–R

+
R

–R

+
R

–R

+
R

–R

+
R

–R

+
R

–P

+
P

–P

+
P

–P

+
P

–P

+
P

–P

+
P

–P

+
P

–P

+
P

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

190

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

M
E

S
I

T
C

S

R
C

C

×

×

×

∞

GPU cores 16 streaming multiprocessors (SMs)

core config 1.4 GHz, 48 warps 32 threads, 32 lanes

warp sched. loose round-robin

register file 32,768 registers (32-bit)

scratchpad 48 KB

per-core L1 32 KB, 4-way set-associative, 128-byte lines,

128 MSHRs

total L2 1024 MB = 8 partitions 128 KB

L2 partition 128 KB, 8-way set-associative, 128-byte lines,

128 MSHRs; 340-cycle minimum latency [38]

1.2
0.8
0.4
0.0

BH

1.2
0.8
0.4
0.0

BH

BFS CL

BFS CL

DLB

DLB

1.7

STN

1.3

STN

1.8

VPR

1.8

VPR

GMEAN

GMEAN

interconnect one xbar/direction, one 32-bit flit/cycle/dir.

@ 700 MHz (175 GB/s/dir.);

Figure 8. Top: stalls caused by SC, normalized to MESI; bottom: SC stall
latency reduction normalized to MESI. L1s are write-through.

DRAM

8-flit VCs (5 for MESI, 2 otherwise)

1400 MHz, GDDR, 8 bytes/cycle (175 GB/s
peak), 460-cycle minimum latency, FR-FCFS
queues, tCL=12, tRP=12, tRC=40, tRAS=28,

tCCD=2, tWL=4, tRCD=12, tRRD=6, tCDLR=5,

tWR=12, tCCDL=3, tWR=2

in synchronized phases, with most data being read at the

beginning of a phase and written at the end. These (and

read-only) data should receive fairly long leases, while data

that is shared often (e.g., locks) should receive short leases.

To find the best lease, the L2 initially predicts the maximum

lease times 32 bits, predicted from 8–16– · · · –1024–2048

Table III
SIMULaTEd GPU and MEMoRy hIERaRchy

inter-threadblock communication

lease (2048) for every block. When the block is written, the

prediction drops to the minimum (8), and grows (2) every

time a read lease is successfully renewed. This way the L2

quickly learns to predict short leases for frequently shared

read-write blocks (such as those containing locks), but long
leases for data that is mostly read and blocks that miss

BFS breadth-first- graph traversal [40] in the L2 (e.g., streaming reads). A similar per-block lease
search

BH Barnes-Hut n-body simulation kernel [41]

CL RopaDemo cloth physics kernel [42]

prediction mechanism has been proposed [24] for logical-time

CPU coherence protocols; unlike our predictor, however, short

DLB dynamic load

balancing

workstealing algorithm for octree par-

titioning [43]

leases are preferred, and the consistency model is relaxed (to
TSO) to maintain performance. Fig. 7 (right) shows that the

STN stencil finite difference solver synchronized predictor reduces expired reads by 31% for inter-workgroup

VPR place & route

using fast barriers [44]

FPGA synthesis tool [45]
workloads (again, intra-workgroup benchmarks benefit but

start with negligible expiration rates).
intra-threadblock communication

HSP hotspot 2D thermal simulation kernel [46]

KMN k-means iterative clustering algorithm [46]

LPS Laplace solver 3D Laplace Solver [40]

Potential livelock. Because RCC allows cores to read

cached data without advancing their logical clocks, a spinlock

that only reads a synchronization variable may livelock unless

other warps advance the logical time. This optimization is
NDL Needleman- DNA sequence alignment [46] common in multicore CPUs with invalidate-based coherence,

Wunsch

SR anisotropic

diffusion

speckle reduction for ultrasound im-

ages [46]

but relies on implicit store-to-load synchronization that is

not guaranteed by coherence or consistency requirements.

LUD matrix LU matrix LU decomposition [46]

Table IV
BEnchMaRks UsEd foR EvaLUaTIon.

with if each block received an optimal lease. We attempted to

sweep a range of fixed leases, but found that the performance

spread among them was negligible. This is because RCC

operates in logical time and most operations advance time

in lease-sized amounts; therefore choosing a single fixed

lease merely changes the rate at which logical clocks run

for everyone. Optimally choosing leases, however, is a non-

trivial problem for read-write shared data partly because

the ―correct‖ lease depends on the precise scheduling and

interleaving of threads; while the correct lease is obvious for

read-only data (=), detecting read-only data at runtime

requires microarchitectural changes [14].

Instead, we observe that GPU applications tend to work

To the best of our knowledge, these kinds of spinlocks are

not used in GPUs, as most workloads have enough available

parallelism to cover synchronization delays; spinning merely

prevents other (potentially more productive) warps from

executing (in general, synchronization in GPUs requires

different optimizations than in CPUs [44]). Nevertheless, this

potential livelock can be avoided by periodically incrementing

the logical time now (say, by 1 every 10,000 cycles).

F. RCC-WO: a weakly ordered variant

Relative load and store ordering is effected through the per-

core logical time now. Keeping track of two separate logical

now times — the read view, consulted and updated by load

operations, and the write view, consulted and updated by store

operations — allows loads and stores to be reordered with

respect to each other. In this scheme, full fence operations

require only that the read view and write view now values

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

191

be set to whichever is larger; performance can potentially

improve because stores no longer expire cache data that do

not have the same block address. The consistency model is

WO [10]; work concurrent with ours [24] proposes a similar

adaptation that supports RCsc [11].

III. REsULTs and dIscUssIon

A. Simulation setup

We follow the methodology used in previous GPU coherence

work [14, 15]. GPGPUsim 3.x [40] is used to simulate

the core, and combined with the Ruby memory hierarchy

simulator from gem5 [47] to execute coherence transactions.

For the sequentially consistent implementations (MESI, TCS,

RCC), we altered the shader core model to execute global

memory instructions sequentially, and stall local memory

operations if there are outstanding global accesses; this

matches the ―naïve SC‖ baseline of [14]. We use Garnet [48]

to simulate the NoC and ORION 2.0 [49] to estimate

interconnect energy.

The simulated configuration is similar to NVIDIA’s

GTX 480 (Fermi [16]), with latencies derived from mi-

crobenchmark studies [38]; this matches the configurations

used in prior work [14, 15]. Table III describes the details.

B. Benchmarks

We use benchmarks identified and classified into inter- and

intra-threadblock communication categories in prior work

on GPU coherence [15]. The intra-threadblock benchmarks

execute correctly without coherence, but are used to quantify

the impact of always-on cache coherence on traditional GPU

workloads. For non-SC simulations, the inter-threadblock

communication benchmarks rely on fences; for SC simula-

tions fences act as no-ops in hardware, but were left in the

sources to prevent the compiler from reordering operations.

Benchmark details and sources are listed in Table IV. Most

were used in prior work on GPU coherence [15]; we dropped

two because our sensitivity studies found them to be highly

nondeterministic and unpredictably sensitive to small changes

in architectural parameters (e.g., a few cycles’ change in L2

latency). We added missing fences to dLB following [9], and

altered tile dimensions in hsp to match GPU cache block

sizes and avoid severe false sharing problems.

C. Results

RCC significantly reduces SC overheads compared to prior

SC implementations for GPUs. Fig. 8 (top) shows issue

stall rates caused by enforcing SC: either direct SC memory

ordering stalls or LSU pipeline stalls caused by waiting on

store acknowledgements. RCC reduces these by 52% relative

to MESI (largely because there are no invalidate delays)

and by 25% relative to TCS (largely because stores in RCC

acquire write permissions without stalling). Fig. 8 (bottom)

shows that SC ordering stalls in RCC are resolved 35% faster

than in MESI and 11% faster relative to TCS. Both of these

metrics directly correlate to performance (see below).

TCW performs better than RCC for Bfs because it benefits

both from its weak memory model and from relaxing write

atomicity. All threads share a ―mask‖ vector, which identifies

nodes to be visited in the next iteration (next level of the

Bfs tree); TCW allows different cores to modify parts of

this vector without other cores observing the result, while

RCC strictly enforces SC on cache block granularity and

sees more L1 misses (73% vs. 52%).

Conversely, RCC outperforms TCW on DLB. In DLB, a

per-threadblock work scheduler that completes its task steals

tasks from a random other threadblock’s scheduler. Since

work could be stolen at any time, all per-threadblock queue

accesses must be protected with fences; fences stall in TCW

until a physical time when all stores have become globally

visible. In actuality, however, work stealing events are rare,

so most of these stalls are unnecessary. RCC allows cores

to progress independently in their own epochs until actual

sharing occurs. In addition, stores do not stall even when

sharing does occur because SC is enforced in logical time.

SC on top of RCC performs substantially better than

prior SC proposals for GPUs. Fig. 9a shows that RCC is 76%

faster than MESI and 29% faster than TCS on workloads

with inter-workgroup sharing; in fact, performance is within

7% of TCW, the best prior non-SC proposal. On benchmarks

with intra-workgroup communication patterns, RCC is 10%

better than MESI and within 3% of both TCS and TCW.

Interconnect energy is 45% lower than MESI, 25% lower

than TCS, and only 7% below TCW on inter-workgroup

workloads (Fig. 9b); on intra-workgroup programs, it is 25%

better than MESI and on par with TCS/TCW. This is partly

due to reductions in traffic (Fig. 9c) and partly due to RCC

needing only two virtual networks to maintain deadlock-free

operations vs. five for MESI. Interconnect energy expenditure

is becoming more important as GPU core counts grow.

RCC closes the strong–weak ordering gap to 7%. We

also developed RCC-WO, a weakly ordered variant of RCC

(Sec. III-F) and compared it with both TCW (our implemen-

tation supports WO) and the default SC implementation of

RCC. RCC-WO performs neck-to-neck with TCW, and both

perform 7% better than RCC-SC.

One RCC implementation can support strong and

weak consistency. The microarchitectural differences be-

tween weak and strong variants of RCC in GPUs consist of

one additional scheduler signal per warp to order memops

from one thread, and a small change in how stores update

L2 metadata. This opens the possibility that the hardware

memory model in GPUs could be chosen at boot time (as

in, e.g., SPARCv9 [50]) or even at runtime.

RCC has fewer states than TCW, TCS, and especially

MESI (Table V). This is important because coherence is

notoriously difficult to verify: usually, validation involves very

simplified formal models and extensive simulations [51, 52],

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

192

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

R
C

C
-S

C

T
C

W

R
C

C
-W

O

(a)

(b)

(c)

Figure 9. Performance normalized to a MESI baseline with write-through L1s: (a) speedup, (b) interconnect energy broken down by component, and
(c) interconnect traffic broken down by message type. Left: workloads with inter-workgroup sharing; right: intra-workgroup sharing.

1.2
1.0
0.8
0.6
0.4
0.2
0.0

1.2
1.0
0.8
0.6
0.4
0.2
0.0

BH BFS CL DLB STN VPR GMEAN HSP KMN LPS NDL LUD SR GMEAN

Figure 10. Speedup of weak ordering implementations vs. RCC-SC on inter-workgroup (left) and intra-workgroup (right) workloads.

but bugs survive despite extensive validation efforts [53–56].

RCC has reasonable silicon area overheads. For every

L1 block, RCC only stores exp, and, for every L2 block,

exp and ver. GPU cache blocks are 128 bytes, with perhaps

3-byte tags; with 32-bit timestamps this is 3% overhead for

L1 and 6% area overhead for L2.

IV. RELaTEd woRk

GPU memory consistency. Hechtman and Sorin first made

the case that the performance impact of SC is likely small

in GPUs [13]. Singh et al [14] observed that, while this was

true for most workloads, some suffered severe penalties with

SC because of read-only and private data; they proposed to

 MESI TCS TCW RCC

L1 states 16 (5+11) 5 (2+3) 5 (2+3) 5 (2+3)

L1 transitions 81 27 42 33

L2 states 15 (4+11) 8 (4+4) 8 (4+4) 4 (2+2)

L2 transitions 50 23 34 14

Table V
RCC has fEwER sTaTEs (sTaBLE+TRansIEnT) and TRansITIons Than oThER

coMpaRaBLE pRoTocoLs.

classify these accesses at runtime and permit reordering while

maintaining SC for read-write shared data. Our approach

is orthogonal: we focus on SC stall latency, and improve

performance for both read-write and read-only data. Both [13]

and [14] used a CPU-like setup with MESI and write-back

L1 caches. In GPUs, however, write-through L1s perform

better [15]: GPU L1 caches have very little space per thread,

so a write-back policy brings infrequently written data into

the L1 only to write it back soon afterwards. Commercial

GPUs have write-through L1s [16–18]. Our work studies

GPU-style write-through L1 caches, and compares against

the best prior GPU implementation of weak consistency [15].

Sinclair et al [57] adapted DeNovo [58] to GPUs with DRF-0

and HRF variants, and argued that the benefits of HRF over

DRF-0 do not warrant the additional complexity; DeNovo,

however, requires software to expose additional details to the

coherence hardware, while our proposal requires no software

changes. Others have proposed RC for system coherence in

CPU-GPU APU systems [13, 59].

Strong vs. weak consistency in CPUs. Many quills

have been sacrificed to argue that sequential consistency

is desirable in CPUs and propose how it could be efficiently

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

193

implemented [21, 22, 60–69]. Generally, speculation support

or other hardware modifications are required to overcome

the overheads of SC. Lin et al [21] and Gope et al [22] also

used logical order to enforce SC in a CPU setting. We share

the conviction that sequential consistency is preferred, but

focus on GPUs, which have different architectural constraints

(e.g., no speculation support).

GPU coherence. Singh et al [15] proposed a GPU

coherence protocol based on physical timestamps, and showed

that MESI and write-back caches suffered NoC traffic and

performance penalties in GPUs. While the consistency model

is weak throughout, the base version (TCS) can support SC

if the core does not permit multiple outstanding memory

operations from one warp; we use this SC variant as

a baseline. The improved version (TCW) cannot support

SC, but adds offers 30% better performance; we use this

for comparison. RCC uses logical rather than physical

timestamps, has lower complexity, and closes the SC-to-weak

gap between TCS and TCW.

Library cache coherence. Nandy and Narayan [70] first

observed that timestamps can reduce interconnect traffic

due to invalidate messages in MSI-like protocols, but their

protocol did not support SC. Shim et al [35] proposed LCC, a

sequentially consistent library protocol, for multicores; LCC

is equivalent to our TCS baseline. Singh et al [15] adapted

LCC to GPUs and proposed a higher-performance weakly

ordered variant with a novel fence completion mechanism;

Kumar et al [36] used TCW for FPGA accelerators. Recently,

Yao et al [71] adapted TCW to multicores by tracking writes

with a Bloom filter. All of these protocols use physical

timestamps, and SC variants must stall stores (and weak

variants must stall fences) until completion; RCC uses logical

time and stalls neither stores nor fences.

Lamport [20] first observed that consistency need only be

maintained in logical time. This fact has been used to im-

plement coherence on a logically ordered bus (e.g., [72, 73])

and to extend snooping coherence protocols to non-bus

interconnects [74, 75]. Meixner and Sorin used logical

timestamps to dynamically verify consistency models [31].

Yu et al [23] proposed using logical timestamps to directly

implement coherence in CPU-style multicores, but maintains

exclusive write states and recall/downgrade messages that

we wish to avoid to reduce store latencies. At the same time,

architectural features not present on GPUs (e.g., speculative

execution) are required to support a timestamp speculation

scheme. Work concurrent with ours [24] proposes non-SC

variants. RCC shares the notion of keeping coherence with

logical timestamps, but eschews exclusive states to focus on

reducing store latencies. RCC is a simpler protocol that offers

best-in-class performance in GPUs.

V. ConcLUsIon

In this paper we track the source of SC inefficiency in GPUs

to long store latencies caused by coherence traffic; these

severely exacerbate SC ordering and structural bottlenecks

that GPUs could otherwise easily amortize. We address these

by proposing RCC, a coherence protocol that uses logical

timestamps to reduce store latency. When used as part of

an SC implementation, RCC reduces SC-related stalls by

25%, and stall resolve latency by 11%, compared to the best

coherence proposal for GPUs capable of supporting SC; as

a result, performance is 29% better.

When used in RC mode, RCC matches the best prior RC

proposal; because the hardware needed for RCC is similar

for SC and RC, a single implementation can potentially allow

runtime selection of the desired memory consistency model.

VI. AcknowLEdgEMEnTs

We are grateful to Tor Aamodt and Ahmed ElTantawy, as

well as the to anonymous reviewers, for insightful feedback.

This research was funded in part by the Natural Sciences

and Engineering Research Council of Canada.

REfEREncEs

[1] L. Lamport, ―How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,‖ IEEE Transac-
tions on Computers, vol. C-28, p. 690, 1979.

[2] K. C. Yeager, ―The MIPS R10000 Superscalar Microprocessor,‖
IEEE Micro, vol. 16, p. 28, Apr 1996.

[3] P. S. Sindhu et al., Scalable Shared Memory Multiprocessors
Springer, 1992, ch. Formal Specification of Memory Models,
p. 25.

[4] S. Owens et al., ―A better x86 memory model: x86-TSO,‖
TPHOL 2009.

[5] SUN Microsystems, ―SPARC Architecture Reference Manual
V8,‖ 1990.

[6] S. Sarkar et al., ―Understanding POWER Multiprocessors,‖
PLDI 2011.

[7] IBM, ―Power ISA, Version 2.07B,‖ 2015.
[8] ARM Ltd., ―ARM Architecture Reference Manual: ARMv8,

for ARMv8-A architecture profile (beta),‖ 2013.
[9] J. Alglave et al., ―GPU Concurrency: Weak Behaviours and

Programming Assumptions,‖ ASPLOS 2015.
[10] M. Dubois et al., ―Memory Access Buffering in Multiproces-

sors,‖ ISCA 1986.
[11] K. Gharachorloo et al., ―Memory Consistency and Event

Ordering in Scalable Shared-memory Multiprocessors,‖ ISCA
1990.

[12] J. Sanders and E. Kandrot, CUDA by example: an introduction
to general-purpose GPU programming Addison-Wesley, 2010.

[13] B. A. Hechtman and D. J. Sorin, ―Exploring Memory Consis-
tency for Massively-threaded Throughput-oriented Processors,‖
ISCA 2013.

[14] A. Singh et al., ―Efficiently Enforcing Strong Memory Order-
ing in GPUs,‖ MICRO 2015.

[15] I. Singh et al., ―Cache coherence for GPU architectures,‖
HPCA 2013.

[16] NVIDIA, ―NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Fermi,‖ 2009.

[17] ——, ―NVIDIA’s Next Generation CUDA Compute Architec-
ture: Kepler GK110,‖ 2012.

[18] ―AMD Graphics Cores Next (GCN) Architecture,‖ June 2012.
[19] J. Power et al., ―Heterogeneous System Coherence for Inte-

grated CPU-GPU Systems,‖ MICRO 2013.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

194

[20] L. Lamport, ―Time, Clocks, and the Ordering of Events in a
Distributed System,‖ Commun. ACM, vol. 21, p. 558, 1978.

[21] C. Lin et al., ―Efficient Sequential Consistency via Conflict
Ordering,‖ ASPLOS 2012.

[22] D. Gope and M. H. Lipasti, ―Atomic SC for simple in-order
processors,‖ HPCA 2014.

[23] X. Yu and S. Devadas, ―TARDIS: Timestamp-based Coherence
Algorithm for Distributed Shared Memory,‖ PACT 2015.

[24] X. Yu et al., ―Tardis 2.0: Optimized Time Traveling Coherence
for Relaxed Consistency Models,‖ PACT 2016.

[25] D. J. Sorin et al., ―A Primer on Memory Consistency
and Cache Coherence,‖ Synthesis Lectures on Computer
Architecture, vol. 6, p. 1, 2011.

[26] J. Manson et al., ―The Java Memory Model,‖ POPL 2005.
[27] H.-J. Boehm and S. V. Adve, ―Foundations of the C++

Concurrency Memory Model,‖ PLDI 2008.
[28] S. V. Adve and M. D. Hill, ―Weak Ordering—a New Defini-

tion,‖ ISCA 1990.
[29] D. R. Hower et al., ―Heterogeneous-race-free Memory Models,‖

ASPLOS 2014.
[30] J. F. Cantin et al., ―The Complexity of Verifying Memory

Coherence,‖ SPAA 2003.
[31] A. Meixner and D. J. Sorin, ―Dynamic Verification of Mem-

ory Consistency in Cache-Coherent Multithreaded Computer
Architectures,‖ DSN 2006.

[32] M. Harris and L. Nyland, ―Inside Pascal: NVIDIA’s Newest
Computing Platform,‖ GTC 2016.

[33] P. Singh et al., ―AMD Platform Coherency and SoC Verifica-
tion Challenges,‖ SOCC 2013.

[34] I. Rickards and E. Sørgård, ―Integrating CPU & GPU: the
ARM methodology,‖ GDC 2013.

[35] K. S. Shim et al., ―Library Cache Coherence,‖ MIT, Tech.
Rep. MIT-CSAIL-TR-2011-027, 2011.

[36] S. Kumar et al., ―Fusion: Design Tradeoffs in Coherent Cache
Hierarchies for Accelerators,‖ ISCA 2015.

[37] X. Yu et al., ―A Proof of Correctness for the Tardis Cache
Coherence Protocol,‖ arXiv preprint arXiv:1505.06459, 2015.

[38] H. Wong et al., ―Demystifying GPU microarchitecture through
microbenchmarking,‖ ISPASS 2010.

[39] J.-P. Schoellkopf, ―SRAM memory device with flash clear and
corresponding flash clear method,‖ 2008, US Patent 7,333,380.

[40] A. Bakhoda et al., ―Analyzing CUDA workloads using a
detailed GPU simulator,‖ ISPASS 2009.

[41] M. Burtscher and K. Pingali, ―An Efficient CUDA Imple-
mentation of the Tree-Based Barnes Hut n-Body Algorithm,‖
in GPU Computing Gems Emerald Edition, W. Hwu, Ed.
Elsevier, 2011.

[42] A. Brownsword, ―Cloth in OpenCL,‖ GDC 2009.
[43] D. Cederman and P. Tsigas, ―On Dynamic Load Balancing

on Graphics Processors,‖ GH 2008.
[44] S. Xiao and W. C. Feng, ―Inter-block GPU communication

via fast barrier synchronization,‖ IPDPS 2010.
[45] J. Rose et al., ―The VTR Project: Architecture and CAD for

FPGAs from Verilog to Routing,‖ FPGA 2012.
[46] S. Che et al., ―Rodinia: A benchmark suite for heterogeneous

computing,‖ IISWC 2009.
[47] N. Binkert et al., ―The Gem5 Simulator,‖ SIGARCH Comput.

Archit. News, vol. 39, pp. 1–7, 2011.
[48] N. Agarwal et al., ―GARNET: A detailed on-chip network

model inside a full-system simulator,‖ ISPASS 2009.
[49] A. B. Kahng et al., ―ORION 2.0: A Fast and Accurate

NoC Power and Area Model for Early-stage Design Space
Exploration,‖ DATE 2009.

[50] SPARC International, ―The SPARC Architecture Manual,
Version 9,‖ 1994.

[51] D. A. Wood et al., ―Verifying a multiprocessor cache controller
using random test generation,‖ IEEE Design & Test of
Computers, vol. 7, pp. 13–25, 1990.

[52] B. Bentley, ―Validating the Intel® Pentium® 4 microprocessor,‖
DSN 2001.

[53] D. Dill et al., ―Protocol verification as a hardware design aid,‖
ICCD 1992.

[54] F. Pong et al., ―Verifying distributed directory-based cache
coherence protocols: S3.mp, a case study,‖ EURO-PAR 1995.

[55] E. M. Clarke et al., ―Verification of the Futurebus+ cache
coherence protocol,‖ Formal Methods in System Design, vol. 6,
p. 217, 1995.

[56] S. Burckhardt et al., ―Verifying Safety of a Token Coherence
Implementation by Parametric Compositional Refinement,‖
VMCAI 2005.

[57] M. D. Sinclair et al., ―Efficient GPU Synchronization Without
Scopes: Saying No to Complex Consistency Models,‖ MICRO
2015.

[58] B. Choi et al., ―DeNovo: Rethinking the Memory Hierarchy
for Disciplined Parallelism,‖ PACT 2011.

[59] B. A. Hechtman et al., ―QuickRelease: A throughput-oriented
approach to release consistency on GPUs,‖ HPCA 2014.

[60] K. Gharachorloo et al., ―Two techniques to enhance the
performance of memory consistency models,‖ ICPP 1991.

[61] P. Ranganathan et al., ―Using Speculative Retirement and
Larger Instruction Windows to Narrow the Performance Gap
Between Memory Consistency Models,‖ SPAA 1997.

[62] C. Gniady et al., ―Is SC + ILP = RC?‖ ISCA 1999.
[63] C. Gniady and B. Falsafi, ―Speculative Sequential Consistency

with Little Custom Storage,‖ PACT 2002.
[64] L. Hammond et al., ―Programming with Transactional Coher-

ence and Consistency (TCC),‖ ASPLOS 2004.
[65] T. F. Wenisch et al., ―Mechanisms for Store-wait-free Multi-

processors,‖ ISCA 2007.
[66] L. Ceze et al., ―BulkSC: Bulk Enforcement of Sequential

Consistency,‖ ISCA 2007.
[67] C. Blundell et al., ―InvisiFence: Performance-transparent

Memory Ordering in Conventional Multiprocessors,‖ ISCA
2009.

[68] A. Singh et al., ―End-to-end Sequential Consistency,‖ ISCA
2012.

[69] S. Aga et al., ―zFENCE: Data-less Coherence for Efficient
Fences,‖ ICS 2015.

[70] S. K. Nandy and R. Narayan, ―An Incessantly Coherent Cache
Scheme for Shared Memory Multithreaded Systems,‖ MIT
LCS CSG Memo 356.

[71] Y. Yao et al., ―Efficient Timestamp-Based Cache Coherence
Protocol for Many-Core Architectures,‖ ICS 2016.

[72] B. Sinharoy et al., ―POWER5 system microarchitecture,‖ IBM
Journal of Research and Development, vol. 49, pp. 505–521,
July 2005.

[73] H. Q. Le et al., ―IBM POWER6 microarchitecture,‖ IBM
Journal of Research and Development, vol. 51, p. 639, 2007.

[74] M. M. K. Martin et al., ―Timestamp Snooping: An Approach
for Extending SMPs,‖ ASPLOS 2000.

[75] N. Agarwal et al., ―In-Network Snoop Ordering (INSO):
Snoopy coherence on unordered interconnects,‖ HPCA 2009.

