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Abstract— In the context of chip multiprocessors, substantial 
research on cache coherence has been conducted (CMP). It is 
generally known that when the number of hardware thread 
contexts rises, conventional directory-based and snooping 
coherence algorithms generate a significant amount of coherence 
traffic. Since GPUs may support hundreds or even thousands of 
threads, using traditional coherence techniques on GPUs will 
make the bandwidth problems already present on GPUs worse. 
Previous research has suggested time-based coherence 
procedures in recognition of this restriction. The main concept is 
to give the accessed cache block a lease duration, and when the 
lease ends, the cache block self-invalidates. Yet, global 
synchronised clocks are necessary for time-based coherence 
protocols. Furthermore, because threads must wait to retrieve 
data with an unused timeout, this strategy might result in more 
execution delays. Recently, the timestamp-based coherence 
protocol known as Tardis was put forth to do away with the 
necessity for global clocks in CPUs. This study expands on 
earlier research and suggests G-TSC, a revolutionary timestamp-
based cache coherence mechanism for GPUs. Coherence 
transactions are carried out by G-TSC in logical time. The 
difficulties in implementing timestamp coherence for GPUs with 
unique microarchitecture features and significant thread 
parallelism are shown in this paper. The following section of this 
work offers a variety of solutions to problems that are GPU-
centric. G-performance TSC's in the GPGPU- Sim simulation 
framework is evaluated, and it outperforms time-based 
coherence with release consistency by 38%. 

 

Keywords-GPU; Cache Coherence 

I. INTRODUCTION 

Graphics processing units (GPUs) have been widely used in 

high throughput general purpose computing because of their 

high power efficiency , computational power, and high off- 

chip memory bandwidth [1], [2]. As the GPU programming 

languages, such as OpenCL [3] and NVIDIA CUDA [4], 

enhance their capabilities GPUs are becoming a better com- 

puting platform choice for general purpose applications with 

regular parallelism. Prior study has argued that GPUs can 

also accelerate applications with irregular parallelism [5]. But 

porting an irregular parallel application to GPUs is currently 

hobbled by the lack of efficient hardware cache coherence 

support. If hardware cache coherence is provided on GPUs, it 

would enable efficient porting of a broad range of parallel 

applications. Cache coherence can be used as a building 

block to design memory consistency models and enable a 

programmer to reason about possible memory ordering when 

threads interact. 

At the architecture level, most of the GPUs currently achieve 

cache coherence by disabling private caches and relying on  
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flags [6], [7]) while AMD GPUs support coherent 

instructions that perform memory operations at the shared L2 

cache and allow the software to flush the private cache at 

anytime [8]. Obviously, such approaches provide coherence 

but at the cost of performance loss stemming from disabling 

caches. With an ideal coherence mechanism, GPU 

applications that requires cache coherence can achieve up to 

88% performance improvement over disabling L1 cache [9]. 

Recently, Temporal Coherence (TC) has been proposed for 

GPUs [9]. TC relies on self-invalidation of expired blocks in 

the private cache to eliminate coherence traffic due to inval- 

idation requests. TC is inspired by Library Cache Coherence 

(LCC) [10], a time-based hardware coherence protocol that 

uses global synchronized counters to track the validity of 

cache blocks at different levels in the cache hierarchy and 

delays updates to unexpired blocks until all private copies are 

self- invalidated. 

Unfortunately, TC suffers from several drawbacks. First, 

the use of global synchronized counters in TC to implement 

coherence raises an issue about the scalability. With the rapid 

growth in chip size and the increase in clock speed, the 

global counters can suffer from clock skewness and wiring 

delay that may affect the correctness of the protocol [11]. 

Second, delayed updates due to unexpired cached copies 

result in execution stalls that do not happen in conventional 

cache coherence protocol. When an update is delayed, all 

subsequent reads are delayed until the update is 

performed. Preserving all cache blocks that are unexpired in 

L2 cache may cause unnecessary cache stalls due to higher 

hardware resource contention. Third, in TC, the 

performance can be sensitive to the lease period; a suitable 

lease period is not always easy to select/predict. 

Tardis is a new CPU coherence protocol based on 

timestamp ordering [12]. It uses a combination of physical 

time and logical time to order memory operations. The key 

difference between Tardis and TC is that Tardis enforces 

global memory order by logical time rather than physical 

time. The timestamp based approach can largely eliminate the 

drawbacks of TC. While Tardis was explored in the context 

of CPU its applica- bility to a GPU’s unique architecture and 

execution model are unknown. 

In this paper, we propose G-TSC, a timestamp-based cache 

coherence protocol for GPUs, inspired by the Tardis. We 

analyze the unique challenges in adopting the logical times- 

tamp ordering approach to the highly threaded GPUs and 

then present and evaluate solutions. These challenges 

include con- 
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trolling the accessibility of the updated data within a streaming 

multiprocessor (SM), managing the replicated requests from 

warps in the same SM, and relaxation of the cache inclusion 

requirement in order to increase the effective cache size. We 

show how to resolve these challenges in the presence of a 

large number of concurrent threads in a single SM that can 

generate a huge number of memory requests in a short time 

window, and in the absence of the write buffers which are 

traditionally used to facilitate these interactions in CPUs. We 

specify the complete operations of G-TSC based on a general 

GPU memory hierarchy. We consider the implementation of 

both Release Consistency (RC) and Sequential Consistency 

(SC) based on G-TSC. We implemented G-TSC in GPGU- 

Sim [13] and used twelve benchmarks in the evaluation. 

When using G-TSC to keep coherence between private caches 

and the shared cache, G-TSC outperforms TC by 38% with 

release consistency. Moreover, even G-TSC with sequential 

consistency outperforms TC with release consistency by 26% 

for benchmarks that require coherence. The memory traffic is 

reduced by 20% for memory intensive benchmarks. 

The rest of this paper is organized as follows. Section II 

gives a brief background about the GPU architecture, memory 

system, memory consistency models, and cache coherence 

protocols. Section III proposes G-TSC. Section IV describes 

the implementation of G-TSC. Section V presents several 

GPU-specific challenges. The evaluation results are discussed 

in Section VI. Some other related works are discussed in 

Section VII and Section VIII concludes the paper. 

II. BACKGROUND AND MOTIVATION 

A. Basic GPU Architecture 

CPU launches a GPU kernel after its input data is transferred 

to the GPU memory. The kernel consists of 3-dimensional 

grid of thread blocks, called Cooperative Thread Array (CTA), 

or work group where each thread block in turns consists of 

a 3-dimensional grid of threads or work items. Each thread 

block is assigned to a Streaming Multiprocessors (SM) that 

executes groups of threads (typically 32 threads) using the 

single instruction multiple thread (SIMT) paradigm. All the 

threads in a single group form a warp or wavefront [14]. 

Typically, a single GPU consists of dozens of SMs. 

GPU applications have three memory spaces: local, private, 

and global memory space. Local memory (also called shared 

memory) is managed by the programmer and used for intra- 

CTA communication [14]. Private memory is a per-thread 

memory while the global memory is shared across all threads 

in the kernel. Local memory is not cached by the multi- 

level cache hierarchy while private and global memory are 

stored in the off-chip DRAM and can be cached [7]. Accesses 

by multiple threads in the same warp are merged into the 

minimum number of accesses by the coalescing unit in each 

SM. 

The cache hierarchy in GPUs consists of a per-SM L1 

private cache and a shared L2 cache. GPU caches adopt non-

inclusive, non-exclusive cache policy with no coherence 

support for private caches [6]. L2 cache is divided into multiple 

banks and each bank is attached to a GDDR memory partition. 

The SMs are connected to multiple L2 cache banks over an 

interconnection network [15]. The cache misses are managed 

using miss status handling registers (MHRs). The MSHR table 

holds the information about all outstanding miss requests and 

allows a single outstanding read request per cache block. 

Since the interconnection network bandwidth is a performance 

bottleneck in GPUs all read accesses to the same cache block 

from different warps are merged in MSHR and a single read 

request is generated to the lower-level cache. 

B. Coherence and Memory Consistency 

Coherence is typically defined with the ”single writer 

multiple reader” invariant. At any given moment in time, there 

is either a single writer or multiple readers for any given mem- 

ory location [16]. The implementation of a cache coherence 

protocol typically involves three aspects: 1) propagating the 

new value to all sharers either by invalidating or updating 

private copies; 2) acknowledging the global performance of 

store operations; 3) maintaining write atomicity [9] when 

required (i.e. value from the store operation is atomically seen 

by all threads at once). Some coherence protocols disregard 

some of these aspects partially or entirely. 

While coherence deals with how values are propagated for a 

single memory location, it is generally not sufficient to reason 

about parallel thread interactions where multiple memory 

locations may be accessed. Memory consistency model defines 

the valid ordering of memory operations to different locations. 

In this paper, we consider the implementation of Sequential 

Consistency (SC) and Release Consistency (RC) on GPUs built 

on top of our timestamp-based coherence protocol. 

Sequential consistency (SC) [17] requires that the memory 

operations of a program appear to be executed in some global 

sequence, as if the threads are multiplexed on a uniprocessor. 

SC restricts many architecture and compiler optimizations and 

usually leads to lower performance [18]. Release Consistency 

(RC), which is a relaxed memory consistency model that 

allows re-ordering of memory operations to different ad- 

dresses. RC also relaxes the write atomicity requirements. The 

programmers can affirm the order between memory operations 

using fence. In summary, SC and RC are considered as two 

extreme examples as SC is the most restrictive memory model 

and RC is a more relaxed memory model. There are models 

in between such as Total-Store-Order (TSO) [18]. 

C. Invalidation-based Protocols 

Conventional invalidation-based coherence protocols de- 

signed for multiprocessors (e.g. directory-based or snoopy 

protocol) are ill-suited for GPUs. They incur extensive coher- 

ence traffic and large storage overhead. The traffic overhead 

incurred by the invalidation-based protocols is due to unnec- 

essary refills for write-once data which is a common access 

pattern in GPUs. Additionally, invalidation-based protocols 

incur the recall traffic, when all L1 copies need to be invali- 

dated upon L2 invalidation or directory eviction. The storage 

overhead of the invalidation-based protocols is mostly due to 
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the need to track outgoing in-flight coherence transactions and 

incoming coherence requests. If we reserve sufficient storage 

to handle the worse case scenario, an on-chip buffer as large 

as 28% of the total GPU L2 cache is needed [19]. 

D. Time-based Coherence 

Temporal coherence (TC) [9] is a time-based cache coher- 

ence protocol designed for GPUs. TC uses time-based self- 

invalidation to reduce the coherence traffic. Like other time- 

based coherence protocols [10], TC assumes that single chip 

systems can implement globally synchronized counters. In 

TC, each cache block in private caches is assigned a lease, 

which indicates the time period that the block can be accessed 

in the private cache. The synchronized counters are used 

to count the lease period. A read access to a cache block 

in L1 cache checks both the tag and expiration time of its 

lease. A valid tag match but expired lease is considered as a 

coherence miss, because the block is already self-invalidated. 

L2 cache keeps track of the expiration time of each cache 

block. When L2 cache receives a read request, it updates the 

expiration time of the block’s lease, so that the new request 

could access it. A write request is sent directly to the L2 

cache where it can be performed only when the leases of 

all private copies of the block expire. TC also implements 

a version that relaxes the write atomicity (TC-Weak) which 

eliminates write stall and postpones any possible stall to 

explicit memory synchronization operation (memory fence). 

Write acknowledgment in TC-Weak returns the time at which 

the write will become visible to all other SMs. These times are 

tracked by Global Write Completion Time (GWCT) counters 

for each warp. A memory fence operation uses GWCT to 

stall warps until all previous writes by that warps are globally 

visible. 

While TC solves some of the challenges in providing 

coherence to GPUs it suffers from several implementation 

related challenges. 

1) Globally Synchronized Clock: TC uses globally syn- 

chronized counters to drive coherence decisions (e.g. self- 

invalidation) and avoid coherence traffic. Each private cache 

and shared cache partition maintain its own synchronized 

counter and all counters are clocked by an independent clock. 

Relying on synchronized counters in all private and shared 

caches to make coherence decisions raises scalability concerns. 

With the growth in GPU chip size and increase of the clock 

speed, the signal used to clock the synchronized counters can 

suffer from clock skew and may also lead to extra power 

consumption for the synchronized clock tree. The clock skew 

can be aggravated by the increase of clock speed and die 

area [11], which will in turn affect the correctness of the 

protocol. 

2) Cache Inclusion: Current GPUs do not enforce cache 

inclusion. TC relies on L2 cache to maintain the lease term 

of each private L1 cache copy. This approach forces L2 to 

be inclusive cache. In the absence of cache inclusion one 

approach to maintain the lease information is to maintain 

the lease terms in memory. But adding lease information to 

memory at the granularity of a cache block size is prohibitively 

expensive, in terms of area. One option to reduce the area cost 

is to maintain lease expiry information at a coarse-granularity, 

say at a page level, rather than at the cache block granularity 

in memory. However, a coarse grained lease counter must be 

updated to the latest lease expiry time of any cache block 

within that larger block. Hence, the lease validity times may 

be unnecessarily increased for all cache blocks in that coarse 

granular block. The consequence is that when the original 

block is fetched back the counter (which is modified by some 

later evictions) can stall the write to the same cache block for 

a longer period unnecessarily. 

To avoid these drawbacks TC assumes inclusive cache, 

which reduces the effective cache size and could eventually 

affect cache performance. It is also incompatible with the 

common assumptions about GPU cache [20], [21], because 

inclusion is normally not enforced. 

3) Lease-Induced Stall and Contention: In TC, when the 

lease of a cache block is not expired, the writes to the block in 

L2 need to be delayed until the lease is expired. When a write 

is delayed, all subsequent reads are delayed until the write is 

performed. The waiting reads then increase the occupancy of 

the input queue of the shared cache. 

Delayed eviction in L2 caches (due to the inclusion require- 

ment discussed above) can cause similar problem. A cache 

block with an unexpired lease forces the replacement policy 

to chose a different victim cache line. If all cache lines in a 

set have unexpired leases then the replacement process also 

stalls. Stalls in L2 cache can affect the capability of the GPUs 

to exploit memory level parallelism which is critical to hide 

memory latency. 

III. G-TSC: GPU CACHE COHERENCE USING TIMESTAMP 

ORDERING 

A. Timestamp Ordering 

The fundamental reason that TC suffers from the various 

drawbacks is that the writes need to wait for the unexpired 

leases. We argue that it is possible to achieve all the benefits 

of TC without introducing stalls and weakening the semantics. 

The key to achieving these desirable properties is timestamp 

ordering. Timestamp ordering is combination of timestamps 

and physical time used to define the order of memory op- 

erations. It is formulated as Op1 Op2  (Op1 <ts 

Op2) or (Op1 =ts Op2 and Op1 <time Op2) where Op1 and 

Op2 are memory operations (load or store), indicates the 

order of memory operations, <time means that the operation 

on the left happened before the operation on the right in 

physical time, and <ts means that the operation on the left 

has a timestamp smaller that the operation on the right. 

When the timestamps of two memory operations are the 
same, the physical time is used to order them. It is different 
from the time-based ordering used by TC, which always uses 

physical time to order global memory operations: Op1 → mem 

Op2 ⇒ Op1 → time Op2 where → mem indicates global 

memory ordering while → time indicates the order of 
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the operations in time. In timestamp ordering, the global time 

is only used to order memory operations from the same thread. 

The key property of timestamp ordering is the capability 

to logically schedule an operation in future by assigning a 

larger timestamp. This largely eliminates the lease-induced 

stalls in TC, as a write could be performed long before the 

read lease expires but logically it can still happen after the 

read. Tardis [12] is a previously proposed coherence protocol 

for CPUs that uses timestamp ordering. In this work, we build 

on Tardis and design timestamp coherence for GPUs, called 

G-TSC. 

 
B. Timestamps in GPUs 

In G-TSC, each cache block (C) in the private and shared 

caches is associated with two timestamps: a read timestamp 

(C.rts) and a write timestamp (C.wts). The timestamps are 

kept as logical counters. C.wts represents the timestamp of the 

store operation that produces the data in C. C.rts represents 

the timestamp through which the data could be correctly read 

from C, after this, the data could be changed. Conceptually, 

the period between C.wts and C.rts is a read-only period in 

which the data in C is guaranteed to be valid for the local 

threads in the SM. We call this period as the lease. Each 

private cache keeps a warp timestamp table (warp ts), where 

warp i’s timestamp is recorded as warp tsi. The timestamp 

of each warp represents the conceptual timestamp of the last 

memory operation performed by that warp. The shared cache 

keeps a memory timestamp (mem ts). mem ts keeps track of 

the maximum rts of all cache blocks evicted from the shared 

cache. 

Memory operations can be conceptually ordered using 

timestamps. It is denoted as OPts which can be LDts (for 

load) or STts (for store). All mem ts and warp ts are 

initially set to 1. wts and rts are set to (mem ts) and 

(mem ts + lease) when the data is fetched from DRAM. 

 

C. Principles of G-TSC 

G-TSC constructs a concurrent system with timestamp 

ordering such that the load value and write order are consistent 

with the timestamp order. For example, consider a load[A] 
and a store[A] (produces value 1), assuming that the initial 

value at A is 0.  If  load  ts  = 10  and  store  ts  = 8,  then 

the load must return 1, because it logically happens after the 

store according to the timestamp, even if according to physical 

time, the load is issued from a warp earlier. If load ts = 8 
and store ts = 10, then the load must return 0. In essence, 

G-TSC attempts to assign the timestamp to each memory 

operation, so that the returned values are consistent with the 

assignments. 

Without conflicting memory operations from different 

warps, each warp monotonically increases its own warp ts 
and assigns it to each memory operation issued. However, 

this ”default” assignment may not fit into the current state 

of the system. In order to satisfy coherence, the protocol 

continuously adjusts the assignment to memory operations 

(LDts and STts) and warp ts as we describe is details in 

the next section. 

IV. G-TSC IMPLEMENTATION 

In this section, we discuss the implementation of G-TSC. 

Our protocol is specified by: 1) The operations in private L1 

after receiving the requests from the SM; 2) The operations 

in shared L2 cache. 3) The operations in private L1 after 

receiving the response from shared L2; 

A. Private Cache Operation 

Figure 1a shows the finite state machine of the L1 cache and 

its transitions. We will explain these states and transitions in 

the following sections. Note that PrRd and PrWr are generated 

by the SM (similar to processor read and processor write in 

traditional CPU coherence transition diagrams), BusRd and 

BusWr are generated by the L1 cache, and BusFill, BusWrAck, 

and BusRnw are generated by the L2 cache (and delivered 

through the interconnection network). 

1) Load: Figure 2 shows the flowchart of a load request 

processing in L1 cache. When a load address has a tag match 

in cache then the cache line where the tag match occurred is 

represented by C and C.wts and C.rts represent respectively, 

the write timestamp of the data in that cache line, and the 

read timestamp assigned when that cache line was fetched 

previously. The load access is then represented by a tuple 

<C, C.DATA, C.wts, C.rts>. 

An access to a cache block in L1 cache results in a hit if 

it fulfills two conditions: 1) pass the tag check, and 2) the 

warp tsi is less than or equal to C.rts, where warp tsi is 

the timestamp of the warp that generated the load operation. 

An access that fulfills both conditions results in a hit and 

it may  update  the  warp  tsi to  Max(warp  tsi, C.wts).  If 
the access fails to fulfill any of these conditions, a read 

request <BusRd, BusRd.wts, BusRd.warp ts> is  sent  to 

L2 cache. The value of BusRd.wts is set to 0 if the requests 

failed in the tag check, otherwise it is set to C.wts if 

there is a tag match but its lease has expired. The value of 

BusRd.warp ts is set to warp tsi. 

2) Store: Figure 3 shows the flowchart of a store request 

processing in L1 cache. Since L1 cache is a write-though 

cache, all store requests (PrWr) are processed in the L2 cache. 

First, if the address hits in the L1 cache the L1 cache block 

data is updated, but all further accesses to the data from the 

SM are blocked (further elaboration in section V-A). After that, 

a  write  request  <BusWr, BusWr.warp     ts, BusWr.Data> 
is sent to the L2 cache where BusWr.warp ts  is  set  to 

warp tsi and BusWr.Data holds the store data. 

B. Shared Cache Operation 

Figure 1b shows the finite state machine of the L2 cache 

and its transitions. We will explain these states and transitions 

in the following sections. Note that BusRd and BusWr are gen- 

erated by L1 cache and received through the interconnection 

network, DRAMFill is generated by the DRAM, DRAMRd is 

generated by the L2 cache and sent to the DRAM, and BusFill, 
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(a) The FSM Actions in L1 Cache. (b) The FSM Actions in the shared L2 Cache. 

Fig. 1: The Finite State Machine of both L1 and L2 Caches. The prefix Pr denotes the messages received from the SM, DRAM 

denotes the messages received from the DRAM and Bus denotes the messages exchanged with the NoC. 

 

 
Fig. 2: The Flowchart of the Load Request From SM 

 

Fig. 3: The Flowchart of the Store Request From SM 

BusRnw, and BusWrAck are generated by the L2 cache and 

sent to L1 cache through the interconnection network. 

1) Loads from L1: The flowchart of processing a read 

request in shared cache is shown in figure 4. If the read 

address hits in L2 cache block, then the wts in the request 

Fig. 4: The Flowchart of the Read Request from L1 Cache 

 

Fig. 5: The Flowchart of the Write Request from L1 Cache 

 
(BusRd.wts) is checked against the wts in the cache block 

and if they match then a renewal response is sent back the 

requester with an updated rts. This is the case when data has 

not been updated in L2 after the last write that is seen by the 

private L1. But the lease in L1 has expired and it simply needs 
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Fig. 6: The Flowchart of DRAM Fill and Eviction 

 
to be renewed. 

If the BusRd.wts does not match wts in the cache block, 

it implies that the data is in fact updated by another SM after 

the requesting SM’s lease has expired. Hence, a fill response 

is sent to the requester including the new data, the wts of the 

new data, and updated rts as shown in the flow chart. 

 

 

 

 

 

 

(a) The Flowchart of Re- 
newal Response from L2. 

 

 

 

 

 

 

(b) The Flowchart of Write Acknowledg- 
ment from L2. 

2) Stores from L1: The processing of a write request 

(BusWr) is described in figure 5. The wts of the new data is 

calculated based on the stored value of rts and the received 

value of warp ts as shown in the flow chart. After calculating 

the value of wts, the value of the new value of the rts is also 

calculated and both timestamps are sent back to the requester 

with the acknowledgment response. 

Finally when the L2 receives a request (either BusRd or 

BusWr) for a cache block that is not present in the cache, 

both load and store will trigger a read request (DRAMRd) 

sent to the GDDR DRAM. 

C. DRAM Operation 

Figure 6 shows how the shared cache handles the DRAM 

fills and block evictions. When a block is filled from DRAM, 

C.wts and C.rts are set based on mem  ts and mem  ts + 
lease  respectively. On the other hand, when a cache block 

is evicted from L2, mem ts needs to record the evicted 

block’s expiration time, so that when later the block is 

fetched back, L2 could assign timestamps to future stores 

correctly. Upon eviction, the value of mem ts is set to 

Max(mem tso, Ce.rts) where mem tso is the original value 

of mem ts and Ce.rts is the rts of the evicted cache block. 

As we mentioned, even though all evicted blocks share the 

same mem ts, it is not an issue for G-TSC, because the 

timestamp ordering could always logically order stores to a 

point in future without stall. 

D. Private Cache Operation After Response from Shared 

Cache 

Figures 7 and 8 show how the private cache handles 

the responses from shared cache. The private cache receives 

a renewal response <BusRnw, BusRnw.rts> when it  al- 

ready has the updated version of the data. In this case, it 

extends the current lease of the block to the rts value in 

the response. However, a write acknowledgment <BusWrAck, 

BusWrAck.rts, BusWrAck.wts> means that a store operation is 

completed and a new values of wts and rts has been assigned. 

Fig. 7: Flowcharts of Private Cache Operation. 

 

Fig. 8: The Flowchart of Fill Response from LLC 

Hence, the private cache needs to update its local information 

and unlock the block so other warps can access it. A fill 

response <BusFill, BusFill.wts, BusFill.rts, BusFill.Data> can 

either fill a new block or update an existing block with new 

data. The private cache should probe the tag array to get the 

older version of the block, or allocate a new cache block for 

the incoming block by using the replacement algorithm. The 

data, rts and wts are copied from the response to the cache 

block allocated (Figure 8). 

We will explain the operations of G-TSC with an example. 

Assume two warps are being executed in two different SMs 

where the first one reads some memory location [X], writes 

to another memory location [Y ] and then reads the [X] again. 

The other warp reads [Y ], writes to [X], and then reads [Y ] 
again. The sequence of instructions for both warps are shown 

in figure 9a. For the sake of this example, we will assume that 

there is only one warp executed in each SM. The execution 

sequence for all instructions is shown in figure 9b. The read 

operation (A1) that tries to read location [X] misses in L1 

cache and hence the read request is sent to the lower-level 
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TABLE I: Contents of Requests and Response Exchanged 

Between Private and Shared Caches. 
 

 

 
 

(a) 

 

against the actual write timestamp of the address in the cache 

(wts = 7). Since they do not match, it is clear that a new 

write has occurred after the last value X was seen by SM0. 

Then the L2 cache sets the new lease of X to be 15 which 

is greater than the timestamp of the reading warp 14, thereby 

giving the reading warp an opportunity to read the data. The 

new data and extended lease period are sent to L1 cache 15 

of the requester. When instruction (B3) tries to read Y in 

SM1, it hits in the cache Ⓧ16.  Note  that  the  timestamp  of 
 

 

 

 

 

 
(b) 

Fig. 9: G-TSC Operation Example. The contents of the caches 

of each SM is shown with the wts and rts of each block in 

the parenthesis. 

 

cache ( 1 ). The request contains the  address (addr  = X), 

the warp timestamp (warp ts = 1) and the write timestamp 

(wts = 0) which is set to zero since the block is not present 

in L1 cache. The block is fetched from the main memory 

and placed in L2 cache 2 and then is sent to L1 cache 

with a lease period ([1,6]) as shown in 3 . Instruction (B1) 

that reads address [Y ] follows the same steps as shown in 

steps  4 , 5 , 6 . We assume a longer lease period for Y  for 

the sake of explanation. The protocol works with any lease 

value. When SM0 executes the write instruction (A2), the 

writing operation should be performed at the shared cache. 

Hence the write is sent to L2 cache with the warp timestamp 

(warp ts = 1) 7 . Based on the information in L2 cache, the 

system knows that the block is valid in some private cache 

until timestamp 11 (SM1 cache in this case) so it assigns 

a write timestamp after that lease period (ST ts = 12) 8 

and sends an acknowledgment to L1 cache with the new 

lease period (wts = 12, rts = 22) 9 . The timestamp of 

warp1 that issued the write operation is adjusted to 12 to 

match the timestamp of the writing operation 9 . Instruction 

(B2) follows the same steps that are shown in 10,11,12. 

After that, SM0 tries to execute instruction (A3) and read X. 

Even though X is present in the cache but the timestamp 

of the reading warp (warp ts = 12) is beyond the lease 

of address X ([1,6]) 13. So a renewal request is sent to L2 

cache containing the write timestamp of X (wts = 1) along 

with the timestamp of the reading warp ((warp ts = 12)) 13. 

L2 cache checks the write timestamp in the renewal request 

Message Type rts wts warp ts data 

Read/Renewal Requests (BusRd)  √ √ 
√ √ 

Write Request (BusWr) √ √  √ 

Fill Response (BusFill) √    

Renewal Response (BusRnw) √ √   

Write Acknowledgment (BusWrAck)     
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→ → → →
 → 

the reading warp (warp ts = 7) fall within the lease period 

([1,11]) hence the read is performed.Based on the timestamp 

ordering, the order of the executed instructions in this 

example is (A1 B1 B2 B3 A2 A3). 

To summarize, Table I shows the contents of different 

messages exchanged in G-TSC. 

V. GPU-RELATED   CONSIDERATIONS 

The above state transition description shows how logical 

time based coherence can be applied within the context of 

GPUs. In this section we discuss GPU-specific 

considerations that need to be addressed for achieving good 

performance. 

A. Update Visibility 

The L1 cache in GPUs is shared between thousands of 

threads, and to ensure correctness, an updated data block 

should not be accessible by other threads until the store 

is completed and acknowledged. With timestamp 

ordering, a store operation is not completed until its 

timestamp is determined. 

Figure 10 illustrates this issue with an example. In this 

example, we will show how poor management of the updated 

data can affect the correctness of the coherence protocol and 

cause a coherence violations. Initially, the cache block A 
has a lease period [1, 5] ([A.wts, A.rts]). In step (2), warp 1 

attempts to write A. According to the validity information 

available in the private cache, the timestamp of the store 

operation (STts) is set to 6 and the warp timestamp (warp 
ts) and write timestamp (wts) are updated accordingly. The 

write is sent to L2 and L1 waits for the acknowledgement. 

Before the acknowledgement which will contain the lease 

that L2 assigns to the new data, both A.wts  and A.rts  are 

set to 6. At this point, L1 only knows that the start of the 

lease will be at least 6. In step (3), warp 2 with warp ts = 1 
reads A and its own warp ts is updated to 6 meaning that 

the timestamp of load operation is set to 6. In step (4), the 

acknowledgement from L2 for the store operation from 

warp 1 arrives, and the assigned lease is [11,20]. The start 

of the lease is greater than 6, and the lease of A in L1 is 

updated to [11,20]. At this point, 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

25 

 

∼ 

we can see that the timestamp of the read from warp 2 in step 

(3) is 6, which is less than the lease of warp 1’s write in global 

order ([11,20]). It means that the write is performed at logical 

time with timestamp 11, but warp 2 already observed it at 

an earlier logical time with timestamp 6. Essentially, a read 

observes a value that will be produced a later logical time. It 

is a violation of coherence. 

Intuitively, there are two ways to resolve this problem: 1) 

delay all accesses to the updated data until the store operation 

is globally performed and acknowledged; or 2) keep the old 

copy along with the new one and allow accessing the old copy 

until the store is globally performed. For 1), an MSHR entry 

is allocated for read requests as if they are read misses, and 

they are granted access to the data as soon as the store is 

acknowledged. At this point, the timestamp is determined and 

the warp ts of the reading warp is updated accordingly. For 

2), a hardware structure is needed to hold the old data while 

the store is pending. Moreover, we also need to ensure that 

the writing warp can only read the new data that it generates 

after the write is being globally performed. 

Note that it is not an issue for Simultaneous Multithreading 

(SMT) [22] processors with conventional coherence protocol 

and write atomicity. Because before the write is globally 

performed, the new value is in the processor’s write buffer and 

the old value is in the L1 cache. The other threads in the same 

processor can bypass write buffer and directly obtain the old 

data from L1 cache, this ensures write atomicity. If write atom- 

icity is not supported, the threads in the same processor could 

read the new values from write buffer. However, conventional 

protocol never allows the read to observe new value before it 

is produced (as opposite to the example in Figure 10). Using 

a write buffer in GPUs increases the hardware complexity of 

the LDST unit and has a high area overhead. A single store 

instruction generates 2-4 memory write operations on average. 

With 48-64 concurrent warps executing the same code, those 

warps are expected to hit the same store instruction within a 

small time window meaning that the write buffer need to deal 

with 200 outstanding write requests per store instruction. 

In this paper, we evaluated both approaches. Different from 

TC, we found that option 1 gives the better trade-off in GPUs. 

The performance overhead of delaying accesses to updated 

block is negligible, so we do not need to pay for the hardware 

cost for keeping multiple copies. 

B. Request Combining in GPUs 

The second challenge is the validity of the data serviced by 

L2 cache requested by multiple threads. 

When multiple read requests from different warps with 

different warp ts in the same SM try to access a cache 

block that is not present in L1 cache, these requests can be 

either all forwarded to L2 cache or just the first request is 

forwarded, with the hope that the other warp ts will fall in 

the lease and be able to access the data. The two options 

indicate a trade-off between coherence traffic and performance. 

Forwarding all requests to L2 cache increases the traffic but 

assures that the requests are serviced as soon as the responses 

 

Fig. 10: Example of Update Visibility Challenge in GPUs 

are returned from L2 cache. Forwarding only the first request 

and keeping the remaining requests in the MSHR preserves the 

bandwidth but may increase the latency of some requests if the 

allocated lease window cannot cover their warp ts and incur 

additional renewals. This issue is significant in GPUs since 

the NoC bandwidth is one of the performance bottlenecks as 

shown in [13]. The choice between forwarding all requests 

and keeping them in MSHR has a significant impact on the 

performance since the latency of the NoC increases with the 

increase of the memory traffic generated by the SMs [23]. 

Forwarding all requests to L2 cache can increase the number 

of memory requests sent by SMs by 12% to 35% on average. 

Consider the example in Figure 11. In step (2), a read 

request is sent to L2 with the warp ts of warp 1. In step 

(3), warp 2 and 3 try to read the same block. Assuming we 

only send one request, they do not generate extra messages 

from L1 to L2. Later in step (4), the response gives L1 the 

lease window [1,5], warp 1’s request is removed from MSHR. 

Unfortunately, it is not sufficient for the other two requests 

so we need to send a renewal request for them and they still 

remain in L1’s MSHR, see step (5). 

In our approach we chose to keep the requests in MSHR 

and then send a renewal request in case the lease term expires 

before the waiting request can read the data. Where extra 

renewal requests are sent we still end up with saving some 

bandwidth because a renewal request generally has a smaller 

data response packet since the response from L2 contains the 

renewed lease information when no stor has been performed 

in the interim. 

C. Non-Inclusive Caches in GPUs 

As discussed in Section II-D2, TC has to force inclusion and 

incur delayed eviction. In timestamp ordering, it is possible 

to maintain only one timestamp in memory for the evicted 

blocks without introducing unnecessary stall, since timestamp 

ordering makes it possible to logically schedule an operation 

to happen in future by assigning a larger timestamp. Therefore, 

even if the timestamp in memory is increased by other 

evictions, a conflicting store can execute without stall by 
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Fig. 11: Example of Multiple Requests Challenge in GPUs 

 
assigning a larger timestamp greater than the single coarse- 

grain timestamp stored in memory. Using timestamp ordering, 

we can support non-inclusive policy, which is compatible with 

current GPUs, and avoid the delayed eviction. 

 

D. Timestamp Overflows 

The experiments based on our benchmarks show that 16- 

bit timestamp is enough for all executions to make timestamp 

counter wrap-around sufficiently rare. Note that the L1 cache 

is flushed after each kernel and all timestamps are reset. In case 

of timestamp wrap around, the timestamp overflow mechanism 

can be handled at the L2 cache. The overflow can occur 

due to lease extension or assigning a timestamp to a new 

store operation (these are the only operations that increase the 

timestamp). The timestamps at the L1 caches are reflection 

of the timestamps assigned by the L2 cache (L1 cache does 

not increment the timestamps by itself). When a timestamp 

update causes an overflow, the L2 cache bank sends a reset 

signal to all L2 cache banks and then reset its timestamps. 

Upon resetting the timestamps in L2 cache bank, the write 

timestamp of all blocks is set to 1 and the read timestamp is 

set to (lease) and the memory timestamp is set to 1. Since the 

L2 cache has the up-to-date data of all blocks, there is no need 

to flush the cache. After resetting all timestamps, the L2 cache 

responds to every request with timestamp with a large value 

with a fill response along with the data even if the request is 

for a renewal. It also includes a timestamp reset signal with the 

response to inform the L1 cache that the timestamp is reset. 

When L1 cache receive a response with a reset message, it 

flushes its blocks and reset warp timestamp and then access 

the new data. 

For comparison, TC uses a 32-bit local timestamp for each 

L1 cacheline, a 32-bit global timestamp for each L2 cacheline, 

a 32-bit entry per warp in the GWCT table and a 32-bit counter 

for each L1 and L2 cache. 

VI. EVALUATION AND DISCUSSION 

A. Evaluation Setup 

We implemented G-TSC in GPGPU-Sim version 3.2.2 [13]. 

We used GPUWattch [24] to estimate the power and energy 

consumption. The simulated GPU has 16 SMs, with 48KB 

shared memory, and 16KB L1 cache each. Each SM can 

run 48 warps at most with 32 threads/warp. L2 cache is 

partitioned into 8 partitions with 128KB each (1MB overall). 

In our evaluation, we used two sets of benchmarks: the first 

set requires cache coherence for correctness, and the other 

does not. The second set of benchmarks are used to show the 

impacts of coherence protocol on them due to the protocol 

overheads. 

The performance of G-TSC is compared against TC. We 

implemented TC on GPGPU-Sim simulator and all the results 

presented in the paper are based on our implementation of 

TC on GPGPU-Sim. But to validate that our implementation 

of TC closely matches the original implementation we also 

ran TC on the same benchmarks with the same configuration 

setting using the original simulator used in the TC paper [9]. 

Table II shows the execution time of TC on our G-TSC 

simulation infrastructure (column four) and the execution time 

of TC on the original simulator (column five). As can be seen 

the two simulators provide very similar execution times. The 

few differences that are present may be attributed to the fact 

that the original TC used Ruby [25] to implement its cache 

and memory system, while we enhanced the default memory 

system implemented in GPGPU-sim for implementing the G- 

TSC memory system. 

 

TABLE II: Absolute Execution Cycles of TC and Baseline 

(BL) in Millions 
 

Benchmark BL 
(G-TSC simulator) 

BL [9] TC 
(G-TSC simulator) 

TC [9] 

BH 0.55 1.26 0.84 1.03 

CC 1.47 2.99 1.77 1.75 

DLP 1.63 5.53 1.63 1.44 

VPR 0.85 1.98 0.90 0.77 

STN 2.00 4.66 1.74 1.62 

BFS 0.79 1.95 2.32 1.87 

CCP 13.50 13.59 13.50 13.47 

GE 2.22 4.89 2.49 3.51 

HS 0.22 0.22 0.23 0.23 

KM 28.74 30.89 30.78 34.17 

BP 0.84 1.61 0.69 0.58 

SGM 6.08 5.74 6.14 5.91 

We also simulated the baseline (BL) configuration, which 

essentially turns off the private cache to provide coherence, 

both on the original TC simulator and our G-TSC simulator. 

Table II shows the execution time of BL on our G-TSC sim- 

ulation infrastructure (column two) and the execution time of 

BL on the original TC simulator (column three). The baseline 

execution times differ in the two models. We believe that the 

difference stems from how the two simulators implement no 

L1 cache design in the simulator. G-TSC implements BL by 

essentially sending all requests directly to the L2 cache over 
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× 

the NOC and assumes that there are no L1 cache tags to 

be checked or L1 cache MSHRs to be updated. Hence, any 

relative performance improvements over the baseline model 

reported in the original TC paper and our paper may be 

different. From here on we report all results relative to our 

baseline implementation on our simulation infrastructure. We 

implemented G-TSC and TC with SC and RC memory 

models. 

 
B. Performance Evaluation 

Figure 12 shows the performance (execution cycles) of G- 

TSC and TC with RC and SC normalized to the performance 

of coherent GPU with L1 cache disabled (therefore enforcing 

coherence through the shared L2 cache). There are two sets 

of benchmarks. The first set shown in the left cluster are 

benchmarks that require coherence and will not function 

correctly without it. The benchmarks in the right cluster do 

not require coherence. Hence, we show one new performance 

bar (the left most bar titled Baseline W/L1) using a baseline 

with L1 cache since they do not need coherence and can take 

advantage of L1 cache in the baseline. 

The higher bars in Figure 12 indicate better performance. 

Our results show that the performance difference between RC 

and SC with G-TSC is smaller than the difference between 

RC and SC for TC. G-TSC does not incur much stall time due 

to unexpired leases, as opposed to TC. Hence, the difference 

between SC and RC with G-TSC is small, sometimes even 

negligible (e.g. BH, BFS and most of the applications that do 

not require coherence as shown in the right cluster). For G- 

TSC, benchmarks that requires coherence obtain 12% speedup 

with RC compared to SC. The overall average speedup is 

around 9% over all benchmarks. 

Interestingly, for one benchmark (CC), SC is better than RC 

in G-TSC˙G-TSC-SC outperforms G-TSC-RC sometimes 

(e.g. CC) because the NoC traffic is limited by the fact that in 

SC only one outstanding memory request per warp is allowed. 

While RC could eliminate certain warp stalls, but it generates 

more coherence messages and allows more requests into NoC, 

which happens to have more negative impact on performance 

in CC. As a result, the average network latency goes down 

and the memory requests can be serviced faster in SC. In 

CC, we indeed confirm that the average network latency per 

request in G-TSC-SC is 29% lower than G-TSC-RC due to 

a 14% reduction in memory request rate generation. Previous 

work [13] showed the similar behavior. 

G-TSC is able to achieve about 38% speedup over TC with 

RC; and about 84% speedup over TC with SC. G-TSC with 

SC outperforms TC with RC by 26% for benchmarks that re- 

quire coherence for correctness. These significant performance 

improvements are mainly due to G-TSC’s ability to avoid 

warp stalling caused by delayed writes and eviction. G-TSC 

also avoids the stalls caused by GWCT in TC before executing 

fence instructions. These stalls aggravate the performance 

penalty in SC since each warp is allowed to have at most 

one outstanding memory request. 

 

Fig. 12: Performance of GPU Coherence Protocols with Dif- 

ferent Memory Models 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13: Pipeline Stalls due to Memory Delay in G-TSC and 

TC Normalized to Stalls in No-L1-Cache Configuration 

Benchmarks like CCP, HS, and KM (that do not require 

coherence) do not exhibit significant difference in performance 

between G-TSC and TC and between SC and RC. These 

benchmarks are compute-intensive benchmarks so the stalls 

imposed by the coherence protocols or consistency model 

requirement are overlapped with execution of other non- 

memory instructions. 

Figure 13 plots the pipeline stalls due to memory delays 

normalized to baseline with no L1 cache configuration. The 

results shows that TC encounters around 45% more stalls than 

G-TSC for the first set of benchmarks and more than 1.4 
stalls for the second set of benchmarks. 

The performance of GPU with L1 cache is also presented 

in figure 12 to show the performance overhead of G-TSCfor 

benchmarks that do not need coherence. We report the per- 

formance of the second group of benchmarks only since the 

presence of L1 cache with no coherence (which is the case 

here) affects the correctness of the first group of benchmarks. 

The figure shows that G-TSC overhead is around 11% with 

respect to the non-coherent GPU. It also shows that G-TSC 

can perform as good as the non-coherent GPU in most of the 

cases (e.g. CCP, GE, HS and SGM). 

Figure 14 shows the performance of G-TSC with different 

lease periods with RC. G-TSC shows small sensitivity for 

lease values variation. This insensitivity is because lease period 
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in G-TSC is not related to the physical time; it represents 

the logical time. Intuitively only very small and very large 

lease values may impact G-TSC. Small lease values can affect 

performance because of the excessive renewal requests. It also 

may aggravate the multiple reader issue discussed in V-B. 

Large leases cause the timestamp to roll faster and reduce the 

chance that multiple warps could access the cache block during 

its lease before renewal. But for a range of lease periods that 

we explored (8-20 cycles) G-TSC performance is unchanged. 

 

 

Fig. 14: Performance of G-TSC-RC with Different Lease 

Values 

 

C. Coherence Traffic 

Coherence traffic in G-TSC and TC is mainly due to the 

lease renewal requests in L1 cache or fetching new data to 

replace old data. Since G-TSC is conducting its coherence 

transactions in logical time, it is able to reduce the coherence 

traffic compared to TC which operates coherence transactions 

in physical time. Since logical time in G-TSC rolls slower 

than the physical time, more load operation are able to access 

the cache block during its lease period in L1 cache. This 

reduces the number of renewal requests. 

Another optimization for NoC bandwidth usage is that 

renewal response in G-TSC does not require sending the data 

again. Figure 15 shows the traffic in NoC for G-TSC and TC 

with RC and SC memory models normalized to the NoC traffic 

in a coherent GPU with no L1 cache. We see that G-TSC is 

able to reduce the traffic by 20% over TC with RC and 15.7% 

with SC for the first set of benchmarks. Note that the NoC 

traffic is almost the same for RC and SC in both G-TSC and 

TC for the second set of benchmarks; these benchmarks do 

not generate coherence traffic to begin with. 

D. Energy 

G-TSC is able to reduce the total energy of the GPU since it 

is able to enhance the performance and reduce the NoC traffic. 

Figure 16 shows the normalized overall energy consumption 

of evaluated benchmarks. G-TSC consumed 11% less energy 

than TC with RC for the first set of benchmarks. RC consumes 

more energy than SC for some benchmarks, like CC and BH, 

even though their performance is better. The reason for this 

 

Fig. 15: NoC Traffic of GPU Coherence Protocols with 

Different Memory Models 
 

 

Fig. 16: Total Energy Consumption of GPU Coherence Pro- 

tocols with Different Memory Models 

behavior is that in SC implementations, the cores remain idle 

and do not consume much energy (except static energy). 

We studied the energy saving of individual components of 

the GPU, mainly, energy consumed by L2 cache, main mem- 

ory (DRAM and memory controller) and the interconnection 

network. G-TSC reduces the energy consumed by the L2 

cache by 2%, the NoC by 4%, and the other GPU components 

by 5%. It also saves 1% more energy for the L2 cache, 3% for 

the NoC, and 5% for the other GPU components over TC. The 

 
 

Fig. 17: L1 Cache Energy (in joules) of GPU Coherence 
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Protocols with Different Memory Models 
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total energy saving is 11% over the baseline, and 9% over the 

TC for the first set of benchmarks. The results in figure 16 

includes the energy of L1 cache. We also presented the L1 

cache energy consumption in figure 17. The figure shows that 

TC consumed slightly less energy than G-TSC. 

We see that in GPUs, SC may not always be a bad 

choice, because it may offer better performance for certain 

benchmarks (as discussed before) and incur less energy due to 

the reduced NoC traffic. With TC, the majority of applications 

show a big gap between RC and SC. However, G-TSC reduces 

this gap and makes it much smaller. This motivates supporting 

SC feasible in GPUs, and some recent works came to the same 

conclusion [26]. 

E. Characteristics of G-TSC 

Implementing cache coherence in logical time in G-TSC 

rather than physical time as in TC introduces some advantages. 

Kernels that have more load instructions than store instructions 

do not incur cache misses due to lease expiration since their 

timestamps roll slower. Our experiments show that the number 

of misses due to lease expiration has dropped by around 48%. 

This observation allows more accesses to hit in L1 cache which 

indeed translates into relatively longer lease in physical time. 

However, multiple results show that G-TSC is insensitive to 

small variations in lease values. It allows the implementation 

with relatively small lease values which limits the speed of 

timestamp rollover. 

VII. RELATED WORK 

The use of timestamps in coherence protocols has been 

studied in multiple hardware and software protocols. Lam- 

port [27] is one of the earliest efforts that tried to use logical 

times to order operations in distributed systems and avoid 

using synchronized physical clocks. They studied the use of 

logical timestamps to order operations in distributed systems. 

De Supinski et. al. in [28] evaluated the performance of 

the late delta cache coherence protocol, a highly concurrent 

directory-based coherence protocols which exploits the notion 

of logical time to provide support for sequential consistency 

and atomicity for CPUs. Min et al. [29] proposed a software- 

assisted cache coherence scheme which uses a combination 

of a compile-time marking of references and a hardware- 

based local incoherence detection scheme. Nandy et al. [30] 

is one of the first hardware coherence protocol that uses 

timestamps. TSO-CC [31] proposed a hardware coherence 

protocol based on timestamps. It supports total-store-ordering 

(TSO) memory consistency model and requires broadcast- 

ing and frequently self-invalidating cache lines in private 

caches. TC-Release++ [32] is a timestamp-based coherence 

protocol for RC that is inspired by TC and addresses the 

scalability issues of efficiently supporting cache coherence in 

large-scale systems. TC-Release++ eliminates the expensive 

memory stalls and provides an optimized lifetime prediction 

mechanism for CMP. 

The previous protocols tightly couple timestamp with phys- 

ical time. Tardis [12] is a timestamp coherence protocol that 

is based on logical time rather than physical time. Tardis 

is designed for CMP and implements SC. G-TSC builds 

on top of Tardis and focuses on GPU implementation. G- 

TSC optimizes the protocol requirements to fit the highly 

multi-threaded GPU cores. An imporved version of Tardis 

(called Tardis 2.0) [33] implements TSO consistency model 

and proposes optimized lease policies. Similar to Tardis, 

Martin et. al [34] proposed timestamp snooping scheme where 

processor and memory nodes perform coherence transactions 

in logical order. The network assigns a logical timestamp for 

each transaction and then broadcasts it to all processor and 

memory nodes without regard for order. 

Self-invalidation in private caches has been explored in 

the context of cache coherence. Dynamic self-invalidation 

(DSI) [35] reduces cache coherence overhead and reduce 

invalidation messages by speculatively identifying which block 

to invalidate when they are brought into the cache but deferring 

the actual invalidation to future time. DSI still requires explicit 

messages to the directory to acknowledge self-invalidation. 

DSI can reduce the traffic by using tear-off blocks that are 

self-invalidated at synchronization instructions. A similar idea 

is proposed in [36] that extends the tear-off blocks to all cache 

blocks in order to entirely eliminate coherence directories. 

Last-Touch Predictors (LTP) [37] triggers speculative self- 

invalidation of memory blocks in distributed shared memory. 

VIII. CONCLUSION 

This paper proposes, G-TSC, a timestamp-based GPU 

cache coherence scheme that reduces the coherence traffic. 

Different than the previous work on time based coherence 

for GPUs, G-TSC conducts its coherence transactions in 

logical time. We implemented G-TSC in GPGPU-Sim and 

used 12 benchmarks in the evaluation. When using G-TSC 

to keep coherence between private L1 caches and the shared 

L2 cache, G-TSC outperforms TC by 38% with release 

consistency. Moreover, even G-TSC with sequential consis- 

tency outperforms TC with release consistency by 26% for 

benchmarks that require coherence for correctness. For the 

same benchmarks, the memory traffic is reduced by 20%. 
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