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ABSTRACT 
In memory buffer side channel attacks, a spy who shares a 

cache with the target queries the locations of the cache to gather 

details about the target's access habits. For instance, in the 

technique known as "evict+reload," the spy repeatedly evicts and 

then reloads a probe address while monitoring if the victim has 

accessed the address in between the two actions. Although there 

are numerous solutions to stop these cache attacks, they all have 

drawbacks: either they degrade speed, demand programmer 

participation, or can only stop specific kinds of assaults. The 

following finding is made for an environment with an inclusive 

cache hierarchy: When the spy removes the probing address from 

the shared cache, the address will also be removed from the victim 

process's private cache, resulting in an inclusion victim. So, to 

prevent a process from creating inclusion victims in the caches of 

cores executing other processes, this study proposes to change the 

shared cache's line replacement method in order to eliminate cache 

attacks. By upholding this rule, the spy is prevented from 

removing the probe address from the shared cache and, as a result, 

is unable to spy on the victim's access habits. Our proposal is 

known as SHARP (Secure Hierarchy-Aware cache Replacement 

Policy). All current cross-core shared-cache threats are successfully 

defended against by SHARP, which requires no coding changes and 

only minor hardware adjustments. We use a cycle-level full-system 

simulator to implement SHARP. We demonstrate that it offers 

minimal average performance decrease and defends against real-world 

threats. 
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1 INTRODUCTION 

Side channel attacks [1, 17, 33, 40, 42] obtain private information 

from a system by observing its behavior, rather than by directly 

gaining access to private information. Such attacks are both popular 

and often highly effective. Due to their nature, they are hard to 

prevent with existing software techniques. Moreover, they are very 

difficult to detect, as they leave no trace within the system. Many 

instances of such attacks have been identified, which are able to 

discover security-sensitive information by monitoring features such 

as a program’s cache use, power consumption, network activity, or 

timing behavior. 

A very common side channel attack is the cache-based attack 

(e.g., [12, 15, 19, 28, 31, 36, 42, 50, 51]). Cache-based side chan- 

nel attacks, or cache attacks for short, observe a program’s cache 

behavior to infer details about the program’s private information. 

A cache attack involves a victim and a spy process. The victim is 

the program of interest, which runs normally, unaware of the attack. 

The spy is a malicious program that probes key locations in the 

cache. With these probes, it extracts information about the cache 

behavior of the victim. In recent years, cache attacks have grown 

ever more sophisticated. The attack scope has expanded to include 

the mobile [28], desktop [36], and cloud domains [42, 51]. Also, 

new attacks monitor multiple facets of a victim, including keyboard 

presses [12] and web search history [15]. 

The most effective type of cache attack involves spy and victim 

processes executing on different cores, sharing the L2 or L3 level 

of an inclusive cache hierarchy. The reason for the attack’s effec- 

tiveness is that it leverages widely-used commodity hardware, and 

is relatively easy to set up. For example, in evict+reload, the spy 

issues references that evict from the shared cache a probe address 

A. Later, the spy references A. Based on the latency of the reference 

to A, the spy knows whether the victim has accessed A since the 

eviction. These types of attacks can target fine-granularity addresses, 

and exploit a high-bandwidth, low-noise channel [19, 31, 50]. 

There have been many previous proposals to combat cross-core 

cache attacks (e.g., [16, 24, 29, 30, 34, 46, 47, 52]). However, these 

defensive techniques are deficient in one way or another. First, many 

of these proposals significantly hurt performance. Others require 

substantial programmer intervention. Finally, others cannot defend 

against all varieties of these cache attacks. 

In the most widely-used environment, where each core has one 

or more levels of private caches, and shares an inclusive lower-level 

cache with all the other cores, we make the following observation: 

when the spy wants to evict the probe address from the shared 

cache, the address is also practically always in the private cache 
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of the core running the victim process. This is because of the 

tight timing requirements to mount a successful attack. Because 

caches are inclusive, the probe address also needs to be evicted 

from the private 
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cache of the victim process. Hence, the probe address becomes what 

is referred to as an inclusion victim. 

To disable cache attacks, the main proposal of this paper is to alter 

a shared cache’s replacement algorithm to prevent a process from 

creating inclusion victims in the caches of cores running other pro- 

cesses. By enforcing this rule, the spy cannot evict the probe address 

from the shared cache and, hence, cannot glimpse any information 

on the victim’s access patterns. While minimizing inclusion victims 

has been proposed in the past to improve cache performance [22], 

ours is the first proposal that uses this idea for security purposes. 

Cache attacks do not always use load instructions to force the evic- 

tion of a victim’s probe addresses from the cache; sometimes they 

use an instruction called clflush. Hence, our proposal also involves a 

slightly modified clflush instruction to thwart these attacks. 

We call our proposal SHARP (Secure Hierarchy-Aware cache Re- 

placement Policy). SHARP is an efficient approach to defend against 

all existing cross-core shared-cache attacks. It requires minimal 

hardware modifications. It works for all existing applications with- 

out requiring any code modifications. Finally, it induces negligible 

average performance degradation. 

To validate SHARP, we implement it in a cycle-level full-system 

simulator and test it against real-world attacks. SHARP effectively 

protects against these attacks. In addition, we run many workloads 

derived from SPEC and PARSEC applications on SHARP to evaluate 

SHARP’s impact on performance. We find that SHARP introduces 

negligible average performance degradation. 

The contributions of this paper are: 

The insight that, to effectively prevent cache attacks in an inclusive 

cache hierarchy, we can alter the shared cache replacement algo- 

rithm to prevent a process from inducing inclusion victims on other 

processes. 

The design of SHARP, which consists of a new cache line replace- 

ment scheme that prevents inclusion victims on other processes, and 

a slightly modified clflush instruction. 

A simulation-based evaluation of SHARP that shows that it is 

effective against real-world attacks, and induces negligible average 

performance degradation. 

 

2 BACKGROUND 

 Cache-Based Side Channel Attacks 

A basic cache-based side channel attack involves a victim process 

and a spy process sharing a cache. It usually consists of an offline 

phase and an online phase. In the offline phase, the attacker identifies 

probe addresses, which are addresses whose access patterns can leak 

information about the victim’s program. The spy can deduce the 

value of private information, such as a private key or a user’s key- 

board input, just by observing the access patterns to probe addresses. 

Probe addresses are identified by analyzing the victim’s program 

manually or with automatic tools [12, 15]. 

Algorithm 1 shows a simple Square-and-Multiply algorithm [9] 

from GnuPG version 1.4.13, which is vulnerable to side channel 

attacks. In the process of computing its output, the algorithm iterates 

over exponent bits from high to low. For each bit, it performs a sqr 

and mod operation. Then, if the exponent bit is ―1‖, the algorithm 

performs a mul and a mod operation that are otherwise skipped. 

Effective probe addresses are the entry points of the sqr function 

in Line 3 (which tells that the iteration is executed) and of the mul 

function in Line 6 (which tells that the bit is ―1‖). By observing 

access pattern on probe addresses, the spy can recover all the bits in 

the exponent. 
 

 

  Algorithm 1: Square-and-Multiply exponentiation.  

Input : base b, modulo m, exponent e = (en 1...e0)2 
Output : be mod m 

1 r = 1 

2   for i = n    1 downto 0 do 

3 r = sqr(r) 
4 r = mod (r, m) 

5 if ei == 1 then 

6 r = mul (r, b) 
7 r = mod (r, m) 

8 end 

9 end 

10 return r 
 

 

The online phase usually consists of three steps: Eviction, Wait, 

and Analysis. In the first one, the spy evicts the victim’s probe ad- 

dresses from the cache. In the second one, the spy waits a designated 

amount of time to allow the victim to potentially access probe ad- 

dresses. In the last one, the spy determines if the victim has accessed 

any probe addresses. These steps are repeated multiple times. 

According to the approach used in the Eviction step, we classify 

attack strategies into conflict-based and flush-based (Table 1). In 

conflict-based strategies, the spy creates cache conflicts to evict 

cache lines containing probe addresses. Specifically, it accesses 

addresses that map to multiple cache lines in the same cache set as a 

probe address. Often, these addresses are called conflict addresses. 
 

Strategies Attacks 

Conflict- 

based 

prime+probe [40], evict+reload [12], 

evict+time [37], alias-driven attack [13], 

evict+prefetch [10] 

Flush- 

based 

flush+reload [50], flush+flush [11], 

invalidate+transfer [20], flush+prefetch [10] 

Table 1: Classification of cache-based side channel attacks. 

 
In flush-based strategies, the spy can access the probe addresses 

— e.g., when the probe addresses are in shared libraries. The attacker 

simply executes clflush instructions to evict the probe addresses from 

the cache [18]. clflush guarantees that the addresses are written back 

to memory and invalidated from the cache. 

The waiting interval of the Wait step is carefully configured [50]. 

It should be precisely long enough for the victim to access a probe 

address exactly once before the Analysis step. If the interval is too 

long, the spy gets only one observation for multiple accesses to 

the probe address by the victim. If the interval is too short, the 

chances of overlapping the Eviction or Analysis step with the vic- 

tim’s probe address access increases. In both cases, accuracy of the 

attack decreases. Empirically, a waiting interval of 2,500–10,000 

cycles works well. 

In the Analysis step, the spy determines whether the probe ad- 

dress was accessed in the Wait step. There are several ways to 

accomplish this goal, including measuring the access time of ei- 

ther the probe or conflict addresses (prime+probe [19, 31, 40] and 

flush+reload [36, 50]), measuring the execution time of the vic- 

tim program while evicting different addresses from the cache 
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(evict+time [35, 37]), or reading values in main memory to see 

if the writebacks of cache lines containing conflict addresses have 

occurred (alias-driven attack [13]). 

There is one attack called the Cache Collision attack [4] that does 

not fit into either the conflict-based or flush-based categories. In this 

attack, the victim reuses data brought into the cache by the attacker. 

We do not know of any current programs that are susceptible to this 

type of attack. Hence, in this paper we do not address this type of 

attack. 

 Example of Cache Attack 

Figure 1 shows the cache state in a simple example of the evict+reload 

[12] conflict-based attack. In this attack, the spy and victim processes 

share addresses — possibly because they use a shared library or due 

to page deduplication. The figure shows a timeline of the state of 

the six cache lines in a set of a six-way set-associative cache. At 

time t0, the victim loads a line with the probe address into the cache 

(black square). In the Eviction step (time t1), the spy accesses six 

conflicting addresses that bring six lines into the cache that fill the 

set (gray squares). In the Wait step (time t2), the spy idles and the 

victim accesses the probe address. 

TLA cache management policy [22] uses some hints that try to 

minimize the probability of selecting an inclusion victim that is 

being used in the private cache. In this paper, we consider the security 

implications of generating inclusion victims. 

2.4 The clflush Instruction 

The x86 clflush instruction invalidates a specific address from all 

levels of the cache hierarchy [18]. The invalidation is broadcasted 

throughout the cache coherence domain. If, at any cache, the line 

is dirty, it is written to memory before invalidation. In user space, 

clflush is used to handle memory inconsistencies such as in memory- 

mapped I/O and self-modifying codes. In kernel space, clflush is 

used for memory management, e.g., to flush from the caches all the 

lines belonging to a page that is being swapped out. 

In Intel processors, a user thread can use clflush to flush readable 

and executable pages. This enables cache-based side channel attacks, 

as a spy can flush pages that it shares with a victim — e.g., a shared 

library. This attack has been reported for Intel [50], AMD [20], and 

ARM [28] processors. 

3 ATTACK ANALYSIS 
victim’s 
actions 

spy’s 
actions In this section, we analyze the two types of cache attacks based on 

probe 
address 

 

conflict 
address 

 

 

 

 
Time 

access --- 

 

 

 
analyze: 

--- 

 

 
no 

 
analyze: 

the Eviction step. 
 

 Conflict-Based Attacks 

We argue that all successful conflict-based attacks share two traits: 

(1) they generate inclusion victims in the private cache of the core 

running the victim thread, and (2) they exploit modern cache line 

replacement policies that do not properly defend against malicious 

creation of inclusion victims. 
Consider the first trait. Existing conflict-based attacks generate 

t6 --- reload  miss 
inclusion victims in the private cache of the victim process’ core. 

Figure 1: Evict+reload attack example. 

In the Analysis step (time t3), the spy accesses the probe address 

and measures its access latency. If, as is shown in the figure, the 

victim accessed the probe address during the waiting interval, the 

spy will get a cache hit. The next three steps (times t4, t5, and t6) 

repeat the Eviction, Wait, and Analysis steps. This time, the victim 

does not access the probe address and the spy records a cache miss. 

The latency of the reload access is longer than before. 

2.3 Inclusion Victims 

In this paper, we focus on attacks leveraging a shared cache in an 

inclusive cache hierarchy. The victim process and the spy process(es) 

all run on different cores. Each core has one or more levels of private 

caches, and shares a lower level of cache (i.e., farther from the 

CPU) with all the other cores. The private higher-level caches must 

contain a subset of the lines held in the shared cache level [2]. In 

this environment, there are inclusion victim lines. These are lines 

that need to be evicted from a private cache because they are being 

displaced from the shared cache due to conflicts there. 

Some authors have studied the impact of inclusion victims on 

performance (e.g., [7, 22]). In most designs, the cache replacement 

algorithm in the shared cache only uses information on shared cache 

hits and misses, and is oblivious of hits in the private caches. The 

This is because the duration of an attack cycle between consecutive 

Eviction steps is very short — on the order of several thousand 

cycles. Attacks use such short cycles to reduce the noise in the 

Analysis step. As a result, if the victim accesses the probe addresses 

during the Wait step, then such addresses will typically remain in the 

victim’s private cache by the next Evict step. Hence, when the spy 

performs the Evict step, it generates inclusion victims in the private 

cache of the victim’s core. 

Further, we note that there are no reported conflict-based at- 

tacks that work on exclusive cache hierarchies. We checked all 

existing attacks and found no exceptions. In processors such as the 

ARM Cortex-A53, which have an inclusive instruction cache and 

an exclusive data cache, existing attacks only target the instruction 

cache [28]. 

The second trait concerns the fact that deployed cache line replace- 

ment algorithms and deployed algorithms for inserting referenced 

lines in the replacement priority list, do not take into consideration 

the possible creation of inclusion victims. This makes commercial 

systems vulnerable to conflict-based attacks. 

Recent proposals (e.g., [23, 32, 41, 48]) take into account the 

requesting core ID when deciding what line in the set to replace, or 

what priority in the replacement list to assign to the referenced line. 

However, they do it to improve resource allocation or to enhance 

performance, and do not try to eliminate inclusion victims. Only 

t0       

 
t1       --- evict 

 
t2       access wait 

 
t3       reload  hit 

 
t4       --- evict 

 
t5       access wait 
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Step 1 Step 2 Step 3 

① 

No more 
candidate 
lines 

No 

No more 
candidate 
lines 

No 
Yes 

① 

Yes 

Yes 
③ ⑤ 

No 

No Yes 

⑧ ⑧ 

④ ② 

⑥ 

No 

⑦ 

⑨ 

Yes 

⑩ 

 

the TLA cache management proposal [22] uses some hints that try 

to minimize the probability of creating inclusion victims. However, 

since TLA is focused on performance, it does not guarantee the 

elimination of inclusion victims and, hence, cannot provide security 

guarantees. 

3.2 Flush-Based Attacks 

Flush-based attacks rely on the clflush instruction to evict a victim’s 

probe addresses from the cache. Entirely disabling the use of such 

instruction is impractical, however, due to both legacy issues and 

valid use cases. However, we make a key observation about the 

legitimate uses of clflush: in user mode, clflush is only really needed 

in uses that update memory locations. Specifically, it is needed to 
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End End 

⑥ Increment the alarm counter 

handle the case when the value of a location in caches is more up-to- 

date than the value of the same location in main memory. In such 

cases, clflush brings the memory to the right state. 

We argue that there is no need to use clflush in user mode for 

pages that are read-only or executable, such as those that contain 

②④ Obtain information on the presence of 
the line in private caches 
③ Is the line in any private cache? 
⑤ Is the line present only in the requester’s 
private cache? 

⑦ Evict a random line 

⑧ Evict the selected line 
⑨ Is alarm counter > threshold? 
⑩ Generate interrupt 

shared library code. Allowing the use of clflush in these pages only 

makes the system vulnerable to flush-based attacks. 

4 SHARP DESIGN 

We propose a novel approach to defend against cache-based side 

channel attacks that is highly effective, induces negligible average 

performance degradation, and requires minimal hardware modifi- 

cations and no code modifications. The approach, called Secure 

Hierarchy-Aware cache Replacement Policy (SHARP) is composed 

of a new cache replacement scheme to protect against conflict-based 

cache attacks, and a slightly modified clflush instruction to pro- 

tect against flush-based cache attacks. In the following, we discuss 

SHARP’s two components, and then give some examples of de- 

fenses. 

 Protecting Against Conflict-Based Attacks 

To protect against conflict-based attacks, SHARP’s main idea is to 

alter a shared cache’s replacement algorithm to minimize the number 

of inclusion victims that a process induces on other processes. The 

goal is to prevent a spy process from replacing shared-cache lines 

from the victim process that would create inclusion victims in the 

private caches of the victim process’ core. The result is that the spy 

cannot create a conflict-based cache attack. 

Assume that a requesting process R (potentially a spy) wants to 

load a line into a set of the shared cache that is full. The hardware 

has to find a victim line to be evicted. The high level operation of 

the SHARP replacement algorithm is shown in Figure 2. It has three 

steps. In Step 1, SHARP considers each line of the set at a time (①), 

in the order based on its replacement priority. For each line, it checks 

if the line is in any private cache (②)–(③). As soon as a line is found 

that is not in any private cache, it is used as the replacement victim 

(⑧). Victimizing this line will not create any inclusion victim. If no 

such line is found, the algorithm goes to Step 2. 

In Step 2, SHARP considers again each line of the set at a time 

(①), in the order based on its replacement priority. For each line, it 

checks if the line is present only in the private cache of R (④)–(⑤). 

As soon as one such line is found, it is used as the replacement 

victim (⑧). Evicting this line will at worst create an inclusion victim 

Figure 2: SHARP replacement algorithm. 

 
in R. No other process will be affected. If no such line is found, the 

algorithm goes to Step 3. 

In Step 3, SHARP increments a per-core local alarm event counter 

(⑥) and selects a random line as the replacement victim (⑦). In this 

case, SHARP may create a replacement victim in a process that is 

being attacked. For this reason, when the alarm event counter of any 

core reaches a threshold (⑨), a processor interrupt is triggered (⑩). 

The operating system is thus notified that there is suspicious activity 

currently in the system. Any relatively low value of the threshold 

suffices, as a real spy will produce many alarms to be able to obtain 

any substantial information. 

From this discussion, we see that SHARP has very general appli- 

cability, requires no code modification (unlike [24, 29]), and does 

not partition the cache among processes (unlike [8, 46]). It allows 

multiple processes to dynamically share the entire shared cache, 

while transparently protecting against conflict-based side-channel 

attacks. 

SHARP requires hardware modifications to implement its replace- 

ment policy. Specifically, SHARP must be aware of what lines within 

the shared cache are present in the private caches. Such information 

is needed in operations ② and ④ of Figure 2. In the subsequent 

subsections, we present three different ways of procuring this infor- 

mation. 

 Using Core Valid Bits. In SHARP, each line in the shared 

cache is augmented with a bitmap with as many bits as cores. 

The bit for core i is set if the line is present in core i’s 

private cache. These are the Presence bits used in directory-

based protocols [26]. For example, in Intel, they are used in 

multicores since the Nehalem microarchitecture [45], where 

they are called Core Valid Bits (CVB). In this first design, 

SHARP simply leverages these bits to deter- mine the 

information needed in operations ② and ④ of Figure 2. 

Note, however, that these bits carry conservative information. 

This means that if bit i is set, core i may have the line in its 

private cache, while if bit i is clear, core i is guaranteed not 

to have the line in its private cache. Such conservatism stems 

from silent evictions of non-dirty lines from private caches; 

these evictions do not update 
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the CVB bits. As a result, the CVB bits will still show the evicting 

core as having a copy of the line in its private cache. Overall, this 

conservatism will cause Steps 2 and 3 in Figure 2 to be executed 

more often than in a precise scheme. However, correctness is not 

compromised. 

 Using Queries. A shortcoming of the previous design is that it 

often ends-up assuming that shared cache lines are present in more 

private caches than they really are. As a result, a process may 

unnecessarily fail to find a victim in Step 1 and end-up victimizing 

its own lines in Step 2, or unnecessarily fail to find a victim in Step 

2 and end-up raising an exception. 

To solve this problem, this second SHARP design extends the 

first one with core queries. Specifically, Step 1 in Figure 2 proceeds 

as usual; it often finds a victim. In Step 2, however, as each line is 

examined in order based on its replacement priority, the SHARP 

hardware queries the private caches of the cores that have the CVB 

bit set for the line, to confirm that the bit is indeed up to date. 

The CVBs of the line are refreshed with the outcome of the query. 

With the refresh, the CVBs may show that, in reality, the line is 

in no private cache, or only in the private cache of the requesting 

processor. In this case, the line is victimized and the replacement 

algorithm terminates; there is no need to examine the other lines. 

As a line’s CVBs are refreshed, the line is considered to be ac- 

cessed, and is placed in its corresponding position in the replacement 

priority. This is done to ensure that such a line is not considered and 

refreshed again in the very near future. 

This design generally delivers higher performance than the first 

one. The reason is that the queries of private caches refresh the CVB 

bits, obtaining a more accurate state of the system for the future. 

Note that the queries are typically hidden under the latency of the 

memory access that triggered them in the first place. 

Similar query-based schemes have been proposed in the past. 

They have been used to reduce inclusion victims with the aim of 

improving performance [22]. 

 Using Core Valid Bits and Queries. A limitation of the 

previous design is that it does not scale well. For multicores with 

many cores, the latency of the queries may not be hidden by the 

cache miss latency. Moreover, the traffic induced by the queries may 

slow down other network requests. Consequently, we present a third 

SHARP design that reduces the number of queries. 

Specifically, in Step 2 of Figure 2, SHARP only sends queries for 

the first N lines examined. For the remaining lines in the set, SHARP 

uses the CVBs as in the first scheme. As usual, Step 2 finishes as 

soon a victim line is found. There are no other changes relative to 

the second design. 

 

 Protecting Against Flush-Based Attacks 

As argued in Section 3.2, there is no need to use clflush in user mode 

for pages that are read-only or executable. Hence, in user mode, 

SHARP only allows clflush to be performed on pages with write 

permissions. 

With this restriction, sharing library code between processes and 

supporting page deduplication do not open up vulnerabilities to flush- 

based attacks. Specifically, if spy and victim process share library 

code and the spy invokes clflush, the spy will suffer an exception 

because the addresses are execution-only. Hence, the victim process 

will not suffer inclusion victims in its cache. Similarly, if spy and 

victim share a deduplicated page and the spy invokes clflush, since 

the page is marked copy-on-write, the OS will trigger a page copy. 

All subsequent clflushes by the spy will operate on the spy’s own 

copy. As before, the attack will be ineffective. 

SHARP allows clflush to execute unmodified in kernel mode, as 

it is necessary for memory management. 

 Examples of Defenses 

We give two examples to show how SHARP can successfully de- 

fend against conflict-based attacks. In the examples, victim and spy 

share a probe address, and the spy uses the evict+reload attack (Sec- 

tion 2.2). Private caches are 4-way set-associative, and the shared 

one is 8-way. We consider first a single-threaded spy and then a 

multi-threaded spy. 

 Attack Using a Single-Threaded Spy. Figure 3 shows the 

cache hierarchy, where the victim runs on Core 0 and the spy on 

Core 1. In Figure 3(a), the victim has loaded the probe address, and 

the spy has loaded four lines with conflict addresses. In Figure 3(b), 

the spy loads four more lines with conflict addresses. Since the 

corresponding set in the shared cache only had three empty lines, one 

of the existing lines has to be evicted. SHARP forces the eviction of 

one of the old lines of the spy — not the one with the probe address. 

Cache 0      Cache 1 Cache 0 Cache 1 

 
line with probe address 

 

 
lines with conflict addresses 

 

 

(a) (b) 

 

Figure 3: SHARP defending against a single-threaded attack. 

 Attack Using a Multi-Threaded Spy. Figure 4 shows a cache 

hierarchy with four private caches, where the victim runs on 

Core 0 and three spy threads run on Cores 1, 2, and 3. In the 

figure, the victim has loaded the probe address, and the spy threads 

tried to evict it. Spy 1 loaded four conflicting lines, and Spy 2 three 

conflicting lines. If Spy 2 now loads another conflicting line, it will 

only victimize one of its own lines. The same is true for Spy 1. 

SHARP is protecting the probe address. 

Cache 0      Cache 1 Cache 2 Cache 3 

line with probe address 

 
Lines with conflict addresses 

 

 

Figure 4: SHARP defending against a multi-threaded attack. 

To have a chance to evict the probe address, a third Spy thread 

(Spy 3) needs to load a conflicting line. However, such access will 

only evict a random line in the set, and it will increment the alarm 

counter. Additional lines loaded by Spy 3 will only victimize Spy 

3’s line. To be able to cause multiple random replacements, the Spy 

threads must be highly coordinated to ensure that, for each round 

of attack, at least one Spy thread does not occupy any line in the 

corresponding shared cache set. 
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SHARP makes it very difficult for a multi-threaded spy to get 

victim’s information through random replacements and, at the same 

time, not be detected. Specifically, the timing of the requests from 

many spy threads needs to be finely coordinated, to ensure that, at 

every round of attack, at least one spy thread does not occupy any 

line in the shared cache set. Second, spies need to handle and tolerate 

the unavoidably high noise, as they try to distinguish between misses 

caused by other spies and by the victim. Third, spies suffer from 

a high risk of being detected, as every single random eviction will 

increment the alarm counter. For these reasons, SHARP is highly 

effective against multi-threaded attacks. 

5 DISCUSSION 

 Handling Related Attacks 

To put SHARP in perspective, we examine how it handles two 

additional situations. 

 Initial Access Vulnerability. There is one type of cache- 

based side channel attack where the spy simply wants to know 

whether the program execution loaded a given probe address. For 

example, the spy repeatedly loads the probe address and evicts it, 

while timing the latency of the load. After the victim loads the probe 

address, the load by the spy is fast because it hits in the cache. We 

call this vulnerability the Initial Access vulnerability. The SHARP 

designs that we have presented are not able to thwart it. This is 

because, in these attacks, the spy does not need to evict the lines that 

have been accessed by the victim. 

An attack targeting this general vulnerability has been imple- 

mented and called the Cache Collision attack [4]. The Initial Access 

vulnerability can be thwarted by adopting the preloading techniques 

proposed in [25, 29]. They involve loading into the cache all the 

security-sensitive addresses, so that the spy cannot know which ad- 

dress the victim really needs to access. Such loading can be done 

with plain loads or with prefetches. SHARP can use such techniques 

to eliminate the Initial Access vulnerability. 

 Exploiting Private Cache Conflicts. Since the private cache 

queries. The CVBs are already present in Intel multicores to support 

cache coherence, and can be reused. In directory-based multiproces- 

sors that use limited-pointer directories, SHARP can be modified to 

also reuse the hardware. 

To support queries, SHARP adds two additional messages to the 

coherence protocol, namely a query request and a query reply. The 

cache controller needs corresponding states to handle the two new 

messages. Such modification has also been used by Intel researchers 

to improve cache management [22]. 

SHARP induces negligible average performance degradation. 

This is because, unlike schemes that explicitly partition the shared 

cache among threads (e.g., [8, 46]), SHARP allows multiple threads 

to dynamically share a cache flexibly. In addition, the queries are 

performed in the background, in parallel to servicing a cache miss 

from memory. In practice, the great majority of the replacements 

that use queries are satisfied with the first query. 

It can be argued that, in some cases, SHARP will cause a thread 

to be stuck with a single way of the shared cache, and repeatedly 

victimize its own private cache lines. This may be the case with 

the victim thread in Figure 4. While such case is possible, it is rare. 

Recall that the lines in a set in the private cache can map to multiple 

sets in the bigger, shared cache (say around 8 or so). The pathological 

case happens when many referenced lines across all cores map to 

the same set in both private and shared caches, and the shared-cache 

associativity is not enough. While possible, this case is rare, only 

temporary, and only affects the relevant cache set. 

 

6 EXPERIMENTAL SETUP 

To evaluate SHARP, we modify the MARSS [38] cycle-level full- 

system simulator. We model a multicore with 2, 4, 8, or 16 cores. 

Each core is 4-issue and out-of-order, and has private L1 and L2 

caches. All cores share a multi-banked L3 cache, where the attacks 

take place. The chip architecture is similar to the Intel Nehalem [45]. 

The simulator runs a 64-bit version of Ubuntu 10.4. Table 2 shows the 

parameters of the simulated architecture. Unless otherwise indicated, 

caches use the pseudo-LRU replacement policy. 

used by the victim process has limited size and associativity, it is    

possible that a probe address gets evicted due to lack of space. After 

this happens, the SHARP designs that use queries may detect that 

the line is no longer in the private cache and pick it as a replacement 

victim in the shared cache. Hence, it is theoretically possible for a 

spy to exploit the capacity and conflict misses in the private cache of 

the victim to bypass SHARP’s protection and mount a cache-based 

side channel attack. 

In practice, mounting such an attack is very difficult. The reason 

is that the spy has no control on the way that lines evict each other in 

the private cache of the victim. In addition, the spy can at best find 

out when a line with the probe address was evicted, but not when 

the probe address was last accessed before the eviction. If knowing 

when a line was evicted was enough to mount an attack, there would 

probably be proposals of conflict-based attacks on non-inclusive 

caches, which we have not seen yet. 

 Hardware Needs & Performance Impact 
SHARP has modest hardware requirements. As per Section 

4.1, it needs presence bits in the shared cache (i.e., the CVBs) 

and cache 

Table 2: Parameters of the simulated architecture. 

 
We evaluate the 7 configurations of Table 3, which have different 

L3 line replacement policies: baseline uses the conventional pseudo- 

LRU policy; cvb, query, and SHARPX use the SHARP designs of 

Sections 4.1.1, 4.1.2, and 4.1.3, respectively. SHARPX includes 4 

configurations (SHARP[1-4]), which vary based on the maximum 

number N of queries emitted. Recall that, for a given set, a query 

needs to be fully completed before a second one can be initiated. 

Parameter Value 

Multicore 2–16 cores at 2.5GHz 

Core 4-issue, out-of-order, 128-entry ROB 

Private L1 
I-Cache/D-Cache 

32KB each, 64B line, 4-way, 
Access latency: 1 cycle 

Private L2 Cache 256KB, 64B line, 8-way, 
Access latency: 5 cycles after L1 

Query from L3 to L2 3 cycle network latency each way 

Shared L3 Cache 2MB bank per core, 64B line, 16 way, 
Access latency: 10 cycles after L2 

Coherence Protocol MESI 

DRAM Access latency: 50ns after L3 
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(b) Using SHARP4. 

Figure 5: Cache hits on the probe addresses by the spy process in GnuPG. 

a dot represents a cache hit in the reload of the corresponding probe 

address. 

In baseline, when a hit occurs, it is because the victim has ac- 

cessed the probe address during the interval between evict and reload. 

In Figure 5(a), we see the pattern of victim accesses to sqr and mul. 

Table 3: Simulated L3 line replacement configurations. 

 
7 EVALUATION 

 Defense Analysis 

In this section, we evaluate the effectiveness of SHARP against two 

real cache-based side channel attacks. We implement the attacks 

using evict+reload, which consists of the spy evicting the probe 

address and then accessing it. If, in between, the victim has accessed 

the probe address, the spy’s reload access hits in the cache; otherwise, 

the spy’s reload access misses. 

To achieve page sharing between spy and victim, the spy mmaps 

the victim’s executable file or shared library into the spy’s virtual 

address space. To select conflict addresses, the spy first accesses 

the system files (i.e., /proc/$pid/pagemap on Linux) to identify the 

physical addresses of probe addresses. It then selects 16 addresses 

that map to the same L3 set as each of the probe addresses to form an 

eviction set. When performing the evict operation, the spy accesses 

the 16 addresses twice to ensure that the probe address is replaced. 

When doing the reload operation, the spy accesses the probe address 

and measures the access time using rdtsc. Based on the time mea- 

sured, it determines if it is an L3 hit. If so, it knows that the address 

has been accessed by the victim. 

We measure the L3 hit and miss time for our architecture. We 

find that, on average, an L3 hit takes 48 cycles, and an L3 miss 170 

cycles. Hence, we use 100 cycles as a threshold to decide if it is a 

hit or a miss. 

In the following attacks, we launch the victim process on one 

core and the spy on another. We show results for the SHARP4 con- 

figuration; the other configurations work equally well in terms of 

defense. 

 Defending against Attacks on GnuPG. Our first attack ex- 

ample targets GnuPG, a free implementation of the OpenPGP stan- 

dard. The modular exponentiation in GnuPG version 1.4.13 uses a 

simple Square-and-Multiply algorithm [9]. The calculation is shown 

in Algorithm 1, and is described in Section 2.1. 

In this attack, the spy divides the time into fixed time slots of 

5,000 cycles, and monitors for 10,000 time slots. In each time slot, 

it evicts and reloads two probe addresses: the entry points of the sqr 

and mul functions (Algorithm 1). Figure 5 shows the result of 100 

time slots for the baseline and SHARP4 configurations. In the figure, 

When a sqr hit is followed by a mul hit, the value of the bit in the 

exponent vector is 1. The figure highlights three examples of this 

case with a shaded vertical pattern. When a sqr hit is not immediately 

followed by a mul hit, the value of the bit in the exponent vector is 

0. The figure highlights two examples of multiple sqr hits in a row 

with a shaded horizontal pattern. In some cases, the timing is such 

that the evict follows the victim’s access. In that case, the reload may 

miss an access. The figure highlights one such example with a circle. 

Even with some such misses, the spy can successfully attain most 

of the bits in the exponent vector, which is enough for the attack to 

succeed. 

Consider now SHARP4. The first time that the victim calls sqr 

and mul, the probe addresses are loaded into the shared cache and 

into the victim’s private cache. Then, SHARP4 prevents the spy from 

evicting the probe addresses from the shared cache. As a result, every 

single reload by the spy will hit in the cache. The result, as shown in 

Figure 5(b), is that the spy in unable to glean any information from 

the attack. 

 Defending against Attacks on Poppler. Our second attack 

example targets Poppler, a PDF rendering library that is widely used 

in software such as Evince and LibreOffice. We select pdftops as 

the victim program. Pdftops converts a PDF file into a PostScript 

file. The execution of pdftops is very dependent on the input PDF 

file. Hornby et al. [15] design an attack that probes the entry points 

of four functions in pdftops that allow the attacker to distinguish 

different input PDF files with high fidelity: 

• Gfx::opShowSpaceText(Object*, int) 

• Gfx::opTextMoveSet(Object*, int) 

• Gfx::opSetFont(Object*, int) 

• Gfx::opTextNextLine(Object*, int) 

Their attack consists of three stages: training, attack, and identifica- 

tion. In the training stage, they collect the probing address sequence 

for different input PDF files multiple times, to obtain the unique 

signature for each file. In the attack stage, the spy records the probe 

address sequence of the victim as it executes pdftops with an input 

PDF file. In the identification stage, the spy computes the Leven- 

shtein distance1 [27] between the victim’s probe sequence and all of 

the training probe sequences. The training sequence with the small- 

est Levenshtein distance to the victim’s is assumed to correspond to 
 

 

1 Levenshtein distance is the smallest number of basic edits (single-character insertions, 

deletions, and replacements) needed to bring one string to the other. 

Config. Line Replacement Policy in L3 

baseline Pseudo-LRU replacement. 

cvb Section 4.1.1 design: Use CVBs in both Step 1 and 2. 

query Section 4.1.2 design: CVBs in Step 1 & queries in Step 2. 

SHARPX Section 4.1.3 design: CVBs in Step 1. In Step 2, limit the 
max number of queries to X, where X = 1, 2, 3, or 4. 
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(a) Using baseline. (b) Using SHARP4. 

Figure 6: Cache hits on the probe addresses by the spy process in Poppler. 

the input file that the victim used. By using this approach, they can 

reliably identify 127 PDF files on a real machine. 

In our attack, the spy monitors the entry points of those functions 

using evict+reload. The spy divides time into fixed time slots of 

10,000 cycles each. During each time slot, it evicts and reloads the 

4 probe addresses. Figure 6 shows the reload hits in 300 slots. In 

baseline (Figure 6(a)), we can clearly monitor the execution of the 4 

functions over time. Since each input PDF file results in a different 

execution order and frequency for these functions, the pattern can 

be used as a signature to uniquely identify the input file. In SHARP4 

(Figure 6(b)), the reloads always hit, which makes it impossible to 

distinguish different input files by their probed cache behavior. 

 
 Performance Impact 

In this section, we evaluate the performance impact of SHARP 

using both mixes of single-threaded applications (SPECInt2006 and 

SPECFP2006 [14]), and multi-threaded applications (PARSEC [3]). 

 
 Single-Threaded Application Mixes. We start by evaluat- ing 

mixes of 2 SPEC applications at a time, using 2 cores with a total L3 

size of 4MB. To choose the mixes, we use the same approach as 

Jaleel et al. [22]. We group the applications into three categories 

according to their cache behavior [21]: SW (small working set), MW 

(medium working set), and LW (large working set). SW applications, 

such as sjeng, povray, h264ref, dealII, and perlbench, fit into the L2 

private caches. MW applications, such as astar, bzip2, calculix, and 

gobmk, fit into the L3. Finally, LW applications, such as mcf and 

libquantum, have a footprint larger than the L3. We choose a set 

of mixes similar to Jaleel et al. [22], which the authors suggest are 

representative of all mixes of the SPEC applications. 

We use the reference input size for all applications. In each ex- 

periment, we start two applications and pin them to separate cores. 

We skip the first 10 billion instructions in each application; then, 

we simulate for 1 billion cycles. We measure statistics for each 

application. 

Figure 7 shows the IPC of each application in each of the 9 

mixes considered. For a given application, the figure shows bars for 

baseline, cvb, query, and SHARP[1,4], which are all normalized to 

baseline. In the figure, higher bars are better. Figure 8 shows the L3 

misses per kilo instruction (MPKI). It is organized as Figure 7 and, 

as before, bars are normalized to baseline. 

From Figure 7, we see that the performance of the applications 

in query and SHARP[1,4] is generally similar to that in baseline. 

Hence, SHARP has a negligible performance impact. In addition, 

the reason why query and SHARP[1,4] all behave similarly is that, 

in the large majority of cases, the first query successfully identifies a 

line to evict. 

The figure also shows that cvb is not competitive. For applications 

such as astar in MIX3 and perlbench in MIX6, cvb reduces the 

IPC substantially. The reason is that the imprecision in the CVBs 

causes suboptimal line replacement. In particular, threads end up 

victimizing themselves. In some of these applications, the relative 

MPKI increases substantially (Figure 8). Note, however, that these 

are normalized MPKI values. In these SW and MW applications, 

while the bar changes may seem large, they correspond to small 

changes in absolute MPKI. For example, the MPKI of dealII in 

MIX8 is 0.025 in baseline, and it increases by 15x to a still modest 

value of 0.392 in cvb. 

Some of the mixes expose the effects of SHARP more than oth- 

ers. For example, the mixes that contain an SW and an LW appli- 

cation are especially revealing (e.g., MIX0). In these workloads, 

SHARP[1,4] helps the SW application retain some L3 ways for itself 

— rather that allowing the LW application to hog all the L3 ways 

as in baseline. As a result, the SW application increases its IPC 

and reduces its MPKI (povray in MIX0). At the same time, the LW 

application does not change its IPC or MPKI much (mcf in MIX0). 

The reason is that the LW application already had a large MPKI, and 

the small increase in misses has little effect. 

 Multi-Threaded Applications. We now evaluate PARSEC 

applications running on 4 cores with a total L3 size of 8MB. The 

applications’ input size is simmedium, except for facesim, which 

uses simsmall. The applications run for the whole region of interest, 

with at least 4 threads, and with threads pinned to cores. For these 

applications, we report total execution time, rather than average IPC, 

as the performance metric. This is because these applications have 

synchronization and, therefore, may execute spinloops. 

Figures 9 and 10 show the normalized execution time and L3 

MPKI, respectively, for each application and for the average. These 

figures are organized as Figures 7 and 8. In Figure 9, lower is better. 

In this environment, threads share data and, therefore, a given 

cache line can be in multiple private caches. As a result, a thread 

may be unable to evict data that it has brought into the shared cache 

because another thread has reused the data and is caching it in its 

own private cache. 

This property may have good or bad effects on the MPKI (Fig- 

ure 10). For example, in ferret, the inability of a thread to evict 

shared data causes cache thrashing and a higher MPKI. On the other 

hand, in fluidanimate, the MPKI decreases slightly. 

If we look at the execution time (Figure 9), we see that query 

and SHARP[1,4] have similar performance as baseline. The only 

difference is a modest slowdown of 6% in canneal. This application 

has a large working set, and the new replacement policy ends up cre- 

ating more misses which, in turn, slow down the application. Overall, 

however, the impact of query and SHARP[1,4] on the execution time 
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Figure 7: Normalized IPC of SPEC application mixes with different replacement policies on 2 cores. 
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Figure 8: Normalized L3 MPKI of SPEC application mixes with different replacement policies on 2 cores. 
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Figure 9: Normalized Execution Time of PARSEC applications with different replacement policies on 4 cores. 
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Figure 10: Normalized L3 MPKI of PARSEC applications with different replacement policies on 4 cores. 
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Figure 11: Normalized IPC and L3 MPKI of SPEC application mixes with different replacement policies on 8 cores. 
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Figure 12: Normalized IPC and L3 MPKI of PARSEC applications with different replacement policies on 16 cores. 

 

is negligible. cvb is slightly worse. The reason is that the imprecision 

of the CVBs causes a higher MPKI and a slightly slower execution. 

 Scalability. To assess the scalability of SHARP, we run SPEC 

application mixes and PARSEC applications with larger core 

counts. Specifically, the SPEC application mixes run on 8 cores with 

a total L3 size of 16MB. The pairs of applications in each mix are 

the same as in Section 7.2.1, except that we run 4 instances of each 

of the two applications. We use the reference input sets, and collect 

statistics for 1 billion cycles after all applications have reached the 

region of interest. 

Figures 11(a) and 11(b) show the normalized IPC and L3 MPKI, 

respectively, for the SPEC mixes. For each mix, we show the average 

of the 8 applications and, due to space limitations, only the baseline, 

query, and SHARP4 configurations. The figures also have bars for 

the average of all mixes. 

The changes in the line replacement algorithm affect what data 

is kept in the L3 caches. Our SHARP designs try to avoid creat- 

ing replacement victims in the private caches of other cores. As 

shown in Figure 11(a), sometimes this causes the average IPC of the 

applications to decrease (povray+mcf) and sometimes to increase 

(h264ref+perlbench). However, on average for all the mixes, the 

IPC under SHARP4 and query is about 3–4% higher than baseline. 

Overall, therefore, we conclude that SHARP has a negligible average 

performance impact. 

As shown Figure 11(b), the L3 MPKI also goes up and down 

depending on the application mix, but the average impact is small. 

Note that, for a given application mix, it is possible that SHARP4 

increases both the average IPC and the average MPKI. For exam- 

ple, in libquantum+sjeng, the average IPC goes up because sjeng’s 

IPC increases more than libquantum’s decreases. At the same time, 

libquantum’s average MPKI goes up more than sjeng’s goes down. 

We also run PARSEC applications on 16 cores with a total L3 size 

of 32MB. The applications’ input size is simlarge. Given the long 

simulation time, we report statistics for the first 1 billion cycles in 

the region of interest. Consequently, we report performance as IPC 

rather than execution time. Figures 12(a) and 12(b) show the nor- 

malized IPC and L3 MPKI, respectively. The figures are organized 

as Figures 11(a) and 11(b). 

In Figure 12(a), we see that most of the applications have similar 

IPCs for baseline, query, and SHARP4. The one application where 

SHARP hurts IPC is canneal. This application has a very large 

working set. In baseline, the L3 MPKI of canneal is 5.18, compared 

to an MPKI lower than 1 for the other applications. In addition, there 

is fine-grained synchronization between threads. Data that is brought 

into the cache by one thread is used by other threads. This causes 

SHARP to avoid evicting such lines. The result is higher MPKI 

(Figure 12(b)) and lower IPC. This behavior is consistent with the 

one displayed for 4-core runs (Figure 9). On average across all the 

applications, however, query and SHARP4 have negligible impact 

on IPC and (to a lesser extent) on MPKI. 

 

 Alarm Analysis 

Recall that when SHARP needs to evict a line from the shared 

cache, it looks for a victim that is not in any private cache or only 

in the private cache of the requester. If SHARP cannot find such a 

victim, it increments an alarm counter in the requesting core and 

evicts a random line in the set. For normal applications, the number 

of alarm increments is low. In an attack, however, the number of 
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alarm increments will be very high. To see why, consider a spy that 

launches multiple threads to attack a victim by generating accesses 

to conflict addresses. Empirically, we find that, in a successful side- 

channel attack, the time between consecutive evictions is about 

2,500-10,000 cycles. So, the attackers will need to cause an alarm 

every 10,000 cycles. In practice, since the operation evicts a random 

line in the set, for a 16-way associative cache, they will need 16 

times more alarms to evict the victim line. Let us assume that we 

have 16 attacker threads and the worst case that each attacker creates 

an equal number of alarms. We then have that each attacker thread 

will increment its counter at least 100,000 times in 1 billion cycles. 

To see how this number compares to the alarm count in a benign 

execution, Table 4 shows the maximum alarm count observed per 1 

billion cycles in any core while running benign workloads. Specif- 

ically, we run the 8-threaded SPEC mixes and 16-threaded PAR- 

SEC applications of Section 7.2.3, and try the cvb, query, SHARP1, 

SHARP2, SHARP3, and SHARP4 configurations. The last row of 

the table shows the maximum number across applications for each 

configuration. 

 
Appls. cvb query SHARP1 SHARP2 SHARP3 SHARP4 

pov-mcf 285238 89 7285 171 121 84 
lib-sje 1618715 1460 4747 2033 1820 1403 

gob-mcf 549976 687 10001 1160 1426 1045 

ast-pov 22701 19 1774 137 36 7 

h26-gob 511 0 16 2 0 0 

bzi-sje 38669 7 177 9 7 2 

h26-per 60536 1 974 184 6 2 

cal-gob 132169 0 37 25 33 1 

dea-pov 3 0 0 1 0 0 

blackscholes 0 0 0 0 0 0 

bodytrack 0 0 0 0 0 0 

canneal 153165 37 1192 39 43 37 

dedup 145079 13 410 32 18 36 

facesim 46409 12 97 32 16 1 

ferret 91443 6 2097 102 15 9 

fluidanimate 25643 2 556 144 26 3 

freqmine 0 0 0 0 0 0 

raytrace 10013 1 85 5 1 1 

swaptions 0 0 0 0 0 0 

x264 35897 2 423 10 5 14 

MAX 1618715 1460 10001 2033 1820 1403 

Table 4: Alarms per 1 billion cycles in benign workloads. 

 
 

From the table, we see that cvb can trigger many alarms in multi- 

ple workloads. These high numbers are due to the lack of precision of 

this replacement policy, where the CVBs can be stale. Consequently, 

cvb is not recommended. 

With the other policies, the number of alarms decreases substan- 

tially. This is because the policies refresh CVBs. For most workloads, 

the number of alarms is less than 100 per 1 billion cycles. A few 

SPEC mixes, such as libquantum+sjeng and gobmk+mcf reach sev- 

eral thousand alarms. These alarms occur because four instances 

of memory-intensive applications (libquantum and mcf) cause con- 

tention on many cache sets, and force evictions of cache lines belong- 

ing to their companion computation-intensive applications (sjeng 

and gobmk). SHARP is unable to find a line that only exists in the 

requester’s private cache, and the alarm counter is incremented. 

PARSEC applications with very little shared data, such as blacks- 

holes and swaptions, have no alarms. This is because SHARP can 

always find a line that exists only in requester’s private cache. Appli- 

cations with a larger amount of sharing between threads (ferret and 

canneal) have a relatively higher number of alarms. Even in such 

cases, however, the number of alarms is orders of magnitude lower 

than when an attack takes place. 

Looking at the last row of the table, we see that SHARP4, SHARP3, 

and query have less than 2,000 alarms per 1 billion cycles in the 

worst case. Of them, SHARP4 is the best design. Hence, we recom- 

mend to use SHARP4 and use a threshold of 2,000 alarm events in 

1 billion cycles before triggering an interrupt. This is two orders of 

magnitude lower than that required for a successful attack. 

 
8 RELATED WORK 

Various approaches have been proposed to defend against cache- 

based side channel attacks. They can be categorized into two groups: 

using cache partitioning to eliminate cache interference, and intro- 

ducing runtime diversification to limit the effectiveness of these 

attacks. 

 
 Cache Partition Techniques 

Cache partitioning prevents a spy from interfering with the victim’s 

cache state by using isolation. Each process is provided a separate 

portion of the cache. Researchers have proposed both software and 

hardware partition techniques [8, 24, 29, 44, 46, 52]. SHARP is 

different from these proposals, as it does not partition the cache. 

Instead, it changes the line replacement policy to prevent inclusion 

victims. 

Cache partitioning techniques can be divided into process-based 

and region-based, depending on the granularity of the isolation they 

support. Process-based cache partitioning divides the cache into mul- 

tiple partitions, and assigns each partition to a process or a process 

group. Region-based cache partitioning assigns each partition to a 

specific region within a program, such as several pages containing 

security-sensitive code and data. In both categories, no interference 

between partitions is allowed. 

Process-based cache partitioning struggles to attain both good 

performance and security. Godfrey [8] implements process-based 

cache partition using page coloring on Xen. Even though this scheme 

can successfully prevent side channel attacks, it has been shown that 

it suffers from significant performance degradation when supporting 

a high number of partitions. SecDCP [46] is a way-partitioning 

scheme where each application is assigned a security class. Based 

on the security classes of the applications running concurrently, 

the scheme dynamically adjusts the partition layout to ensure an 

application cannot attack another application with a higher security 

class. However, when applications are in the same security class, the 

scheme is forced to use static partitioning. In both of the previous 

schemes, selective cache flushing of partitions is required when the 

number of processes exceeds the number of partitions available. In 

addition, both schemes must disable both deduplication and the use 

of shared libraries. 

CacheBar [52] periodically and probabilistically configures the 

maximum number of ways that a security domain can occupy within 

each cache set. However, since an attacker can use multiple coop- 

erating threads, CacheBar must limit the number of ways for all 

unknown processes. This tends to result in unfairness and perfor- 

mance degradation. Moreover, this scheme cannot efficiently support 

a large number of security domains. 
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Several pseudo cache partitioning techniques have been studied 

to provide a fair allocation of resources and/or improve the perfor- 

mance in a shared cache [23, 32, 41, 48]. They try to minimize the 

interference caused by thrashing/streaming threads by either prior- 

itizing them during victim selection or inserting their lines with a 

lower priority. Such schemes do not provide any security guarantees 

and are aimed only at improving the performance of the cache. When 

they are modified to provide additional security guarantees [43], the 

mechanisms look similar to the ones we discussed earlier. 

Region-based partitioning [24, 29, 44] divides the cache into a 

secure partition and an insecure partition. The secure partition is 

reserved for security-critical addresses, while the insecure partition 

is shared by all processes dynamically. 

StealthMem [24] uses page coloring. It reserves several stealth 

pages via special colors for security-sensitive data. In their scheme, 

the operating system ensures that these pages are not evicted by nor- 

mal cache accesses. Catalyst [29] leverages Intel’s CAT (Cache Al- 

location Technology) hardware mechanism to divide the cache into 

secure and non-secure partitions, and uses software page coloring 

within the secure partition to block interference between processes 

requesting protection. Cache line locking [47] allows processes to 

exclusively use the cache at the granularity of a cache line. 

These region-based techniques have a relatively smaller perfor- 

mance overhead than process-based techniques, since they try to 

maximize the number of dynamic accesses to the shared cache while 

maintaining sufficient isolation. However, region-based schemes 

heavily rely on the programmer to achieve good performance. These 

schemes require the programmer to label the secure-sensitive regions 

within an application. This is easy to do for cryptography algorithms, 

since these public libraries are well studied and verified. However, 

for ordinary applications, it is not trivial to locate important data or 

execution path regions precisely. SHARP is more practical. SHARP 

leverages the private caches to hide secret information from the at- 

tackers. It does not need any security analysis or modifications to 

existing software. 

 

 
 Runtime Diversification 

Runtime diversification techniques are varied and range from intro- 

ducing noise to the system clock [16, 34] to randomizing the address 

mapping [47] and adding noise to the cache insertion policy [30]. 

Each of these approaches has drawbacks: either it cannot defend 

against all types of attacks, or it suffers from significant performance 

degradation. 

Wang and Lee [47] propose to dynamically randomize the mem- 

ory line mapping in L1. Liu and Lee [30] propose the Random Fill 

Cache for the L1 to defend against reuse-based side channel attacks. 

Both approaches may suffer substantial performance degradation if 

applied to the much larger last level cache. 

FuzzyTime [16] and TimeWarp [34] disrupt timing measurements 

by adding noise to the clock or slowing it down. They can protect 

against attacks which measure cache access latency and execution 

time, but they are unable to prevent alias-driven attacks [13]. Fur- 

thermore, they hurt benign programs that require a high-precision 

clock. 

 Detection Techniques 

Several approaches have been proposed to detect cache-based side 

channel attacks. Chiappetta et al. [6] detect side channels based 

on the correlation of last level cache accesses between victim and 

spy processes. HexPADS [39] detects side channel attacks by the 

frequent cache misses caused by the spy process. These heuristic 

approaches are not robust, and tend to suffer high false positives and 

false negatives. 

CC-Hunter [5] and ReplayConfusion [49] can effectively detect 

cache-based covert channel attacks. However, they may not be effec- 

tive for side channel attacks. 

SHARP’s alarm mechanisms can effectively detect side channel 

attacks that bypassed the first two steps in the SHARP algorithm. 

This is because the alarm is incremented every time a spy generates 

an inclusion victim in another thread. The threshold rate we use is 

two orders of magnitude lower than the rate of evictions required for 

a successful attack. 

 

9 CONCLUSION 

To combat the security threat of cross-core cache-based side channel 

attacks, this paper made three contributions. First, it made an obser- 

vation for an environment with an inclusive cache hierarchy: when 

the spy evicts the probe address from the shared cache, the address 

will also be evicted from the private cache of the victim process, 

creating an inclusion victim. Consequently, to disable cache attacks, 

the spy should be prevented from triggering inclusion victims in 

other caches. 

Next, the paper used this insight to defend against cache-based 

side channel attacks with SHARP. SHARP is composed of two parts. 

It introduces a new line replacement algorithm in the shared cache 

that prevents a process from creating inclusion victims in the caches 

of cores running other processes. It also slightly modifies the clflush 

instruction to protect against flush-based cache attacks. SHARP is 

highly effective, needs only minimal hardware modifications, and 

requires no code modifications. 

Finally, this paper evaluated SHARP on a cycle-level full-system 

simulator and tested it against two real-world attacks. SHARP effec- 

tively protected against these attacks. In addition, SHARP introduced 

negligible average performance degradation to workloads with SPEC 

and PARSEC applications. 
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