
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

232

→

→

Protecting Against Cache-Based Side Channel Attacks with Secure

Power structure Cache Replacement Policy (SHARP)

Ms. Swarnakanti Samantaray

1
*, Mr.Narottam Sahu

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 swarnakanti@thenalanda.com*, narottam@thenalanda.com

ABSTRACT
In memory buffer side channel attacks, a spy who shares a

cache with the target queries the locations of the cache to gather

details about the target's access habits. For instance, in the

technique known as "evict+reload," the spy repeatedly evicts and

then reloads a probe address while monitoring if the victim has

accessed the address in between the two actions. Although there

are numerous solutions to stop these cache attacks, they all have

drawbacks: either they degrade speed, demand programmer

participation, or can only stop specific kinds of assaults. The

following finding is made for an environment with an inclusive

cache hierarchy: When the spy removes the probing address from

the shared cache, the address will also be removed from the victim

process's private cache, resulting in an inclusion victim. So, to

prevent a process from creating inclusion victims in the caches of

cores executing other processes, this study proposes to change the

shared cache's line replacement method in order to eliminate cache

attacks. By upholding this rule, the spy is prevented from

removing the probe address from the shared cache and, as a result,

is unable to spy on the victim's access habits. Our proposal is

known as SHARP (Secure Hierarchy-Aware cache Replacement

Policy). All current cross-core shared-cache threats are successfully

defended against by SHARP, which requires no coding changes and

only minor hardware adjustments. We use a cycle-level full-system

simulator to implement SHARP. We demonstrate that it offers

minimal average performance decrease and defends against real-world

threats.

CCS CONCEPTS

• Security and privacy Side-channel analysis and counter-

measures; • Computer systems organization Architectures;

Multicore architectures;

KEYWORDS

Security, Side channel, Cache, Cache replacement

1 INTRODUCTION

Side channel attacks [1, 17, 33, 40, 42] obtain private information

from a system by observing its behavior, rather than by directly

gaining access to private information. Such attacks are both popular

and often highly effective. Due to their nature, they are hard to

prevent with existing software techniques. Moreover, they are very

difficult to detect, as they leave no trace within the system. Many

instances of such attacks have been identified, which are able to

discover security-sensitive information by monitoring features such

as a program’s cache use, power consumption, network activity, or

timing behavior.

A very common side channel attack is the cache-based attack

(e.g., [12, 15, 19, 28, 31, 36, 42, 50, 51]). Cache-based side chan-

nel attacks, or cache attacks for short, observe a program’s cache

behavior to infer details about the program’s private information.

A cache attack involves a victim and a spy process. The victim is

the program of interest, which runs normally, unaware of the attack.

The spy is a malicious program that probes key locations in the

cache. With these probes, it extracts information about the cache

behavior of the victim. In recent years, cache attacks have grown

ever more sophisticated. The attack scope has expanded to include

the mobile [28], desktop [36], and cloud domains [42, 51]. Also,

new attacks monitor multiple facets of a victim, including keyboard

presses [12] and web search history [15].

The most effective type of cache attack involves spy and victim

processes executing on different cores, sharing the L2 or L3 level

of an inclusive cache hierarchy. The reason for the attack’s effec-

tiveness is that it leverages widely-used commodity hardware, and

is relatively easy to set up. For example, in evict+reload, the spy

issues references that evict from the shared cache a probe address

A. Later, the spy references A. Based on the latency of the reference

to A, the spy knows whether the victim has accessed A since the

eviction. These types of attacks can target fine-granularity addresses,

and exploit a high-bandwidth, low-noise channel [19, 31, 50].

There have been many previous proposals to combat cross-core

cache attacks (e.g., [16, 24, 29, 30, 34, 46, 47, 52]). However, these

defensive techniques are deficient in one way or another. First, many

of these proposals significantly hurt performance. Others require

substantial programmer intervention. Finally, others cannot defend

against all varieties of these cache attacks.

In the most widely-used environment, where each core has one

or more levels of private caches, and shares an inclusive lower-level

cache with all the other cores, we make the following observation:

when the spy wants to evict the probe address from the shared

cache, the address is also practically always in the private cache

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

233

of the core running the victim process. This is because of the

tight timing requirements to mount a successful attack. Because

caches are inclusive, the probe address also needs to be evicted

from the private

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

234

•

•

•

−

−

cache of the victim process. Hence, the probe address becomes what

is referred to as an inclusion victim.

To disable cache attacks, the main proposal of this paper is to alter

a shared cache’s replacement algorithm to prevent a process from

creating inclusion victims in the caches of cores running other pro-

cesses. By enforcing this rule, the spy cannot evict the probe address

from the shared cache and, hence, cannot glimpse any information

on the victim’s access patterns. While minimizing inclusion victims

has been proposed in the past to improve cache performance [22],

ours is the first proposal that uses this idea for security purposes.

Cache attacks do not always use load instructions to force the evic-

tion of a victim’s probe addresses from the cache; sometimes they

use an instruction called clflush. Hence, our proposal also involves a

slightly modified clflush instruction to thwart these attacks.

We call our proposal SHARP (Secure Hierarchy-Aware cache Re-

placement Policy). SHARP is an efficient approach to defend against

all existing cross-core shared-cache attacks. It requires minimal

hardware modifications. It works for all existing applications with-

out requiring any code modifications. Finally, it induces negligible

average performance degradation.

To validate SHARP, we implement it in a cycle-level full-system

simulator and test it against real-world attacks. SHARP effectively

protects against these attacks. In addition, we run many workloads

derived from SPEC and PARSEC applications on SHARP to evaluate

SHARP’s impact on performance. We find that SHARP introduces

negligible average performance degradation.

The contributions of this paper are:

The insight that, to effectively prevent cache attacks in an inclusive

cache hierarchy, we can alter the shared cache replacement algo-

rithm to prevent a process from inducing inclusion victims on other

processes.

The design of SHARP, which consists of a new cache line replace-

ment scheme that prevents inclusion victims on other processes, and

a slightly modified clflush instruction.

A simulation-based evaluation of SHARP that shows that it is

effective against real-world attacks, and induces negligible average

performance degradation.

2 BACKGROUND

 Cache-Based Side Channel Attacks

A basic cache-based side channel attack involves a victim process

and a spy process sharing a cache. It usually consists of an offline

phase and an online phase. In the offline phase, the attacker identifies

probe addresses, which are addresses whose access patterns can leak

information about the victim’s program. The spy can deduce the

value of private information, such as a private key or a user’s key-

board input, just by observing the access patterns to probe addresses.

Probe addresses are identified by analyzing the victim’s program

manually or with automatic tools [12, 15].

Algorithm 1 shows a simple Square-and-Multiply algorithm [9]

from GnuPG version 1.4.13, which is vulnerable to side channel

attacks. In the process of computing its output, the algorithm iterates

over exponent bits from high to low. For each bit, it performs a sqr

and mod operation. Then, if the exponent bit is ―1‖, the algorithm

performs a mul and a mod operation that are otherwise skipped.

Effective probe addresses are the entry points of the sqr function

in Line 3 (which tells that the iteration is executed) and of the mul

function in Line 6 (which tells that the bit is ―1‖). By observing

access pattern on probe addresses, the spy can recover all the bits in

the exponent.

 Algorithm 1: Square-and-Multiply exponentiation.

Input : base b, modulo m, exponent e = (en 1...e0)2
Output : be mod m

1 r = 1

2 for i = n 1 downto 0 do

3 r = sqr(r)
4 r = mod (r, m)

5 if ei == 1 then

6 r = mul (r, b)
7 r = mod (r, m)

8 end

9 end

10 return r

The online phase usually consists of three steps: Eviction, Wait,

and Analysis. In the first one, the spy evicts the victim’s probe ad-

dresses from the cache. In the second one, the spy waits a designated

amount of time to allow the victim to potentially access probe ad-

dresses. In the last one, the spy determines if the victim has accessed

any probe addresses. These steps are repeated multiple times.

According to the approach used in the Eviction step, we classify

attack strategies into conflict-based and flush-based (Table 1). In

conflict-based strategies, the spy creates cache conflicts to evict

cache lines containing probe addresses. Specifically, it accesses

addresses that map to multiple cache lines in the same cache set as a

probe address. Often, these addresses are called conflict addresses.

Strategies Attacks

Conflict-

based

prime+probe [40], evict+reload [12],

evict+time [37], alias-driven attack [13],

evict+prefetch [10]

Flush-

based

flush+reload [50], flush+flush [11],

invalidate+transfer [20], flush+prefetch [10]

Table 1: Classification of cache-based side channel attacks.

In flush-based strategies, the spy can access the probe addresses

— e.g., when the probe addresses are in shared libraries. The attacker

simply executes clflush instructions to evict the probe addresses from

the cache [18]. clflush guarantees that the addresses are written back

to memory and invalidated from the cache.

The waiting interval of the Wait step is carefully configured [50].

It should be precisely long enough for the victim to access a probe

address exactly once before the Analysis step. If the interval is too

long, the spy gets only one observation for multiple accesses to

the probe address by the victim. If the interval is too short, the

chances of overlapping the Eviction or Analysis step with the vic-

tim’s probe address access increases. In both cases, accuracy of the

attack decreases. Empirically, a waiting interval of 2,500–10,000

cycles works well.

In the Analysis step, the spy determines whether the probe ad-

dress was accessed in the Wait step. There are several ways to

accomplish this goal, including measuring the access time of ei-

ther the probe or conflict addresses (prime+probe [19, 31, 40] and

flush+reload [36, 50]), measuring the execution time of the vic-

tim program while evicting different addresses from the cache

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

235

(evict+time [35, 37]), or reading values in main memory to see

if the writebacks of cache lines containing conflict addresses have

occurred (alias-driven attack [13]).

There is one attack called the Cache Collision attack [4] that does

not fit into either the conflict-based or flush-based categories. In this

attack, the victim reuses data brought into the cache by the attacker.

We do not know of any current programs that are susceptible to this

type of attack. Hence, in this paper we do not address this type of

attack.

 Example of Cache Attack

Figure 1 shows the cache state in a simple example of the evict+reload

[12] conflict-based attack. In this attack, the spy and victim processes

share addresses — possibly because they use a shared library or due

to page deduplication. The figure shows a timeline of the state of

the six cache lines in a set of a six-way set-associative cache. At

time t0, the victim loads a line with the probe address into the cache

(black square). In the Eviction step (time t1), the spy accesses six

conflicting addresses that bring six lines into the cache that fill the

set (gray squares). In the Wait step (time t2), the spy idles and the

victim accesses the probe address.

TLA cache management policy [22] uses some hints that try to

minimize the probability of selecting an inclusion victim that is

being used in the private cache. In this paper, we consider the security

implications of generating inclusion victims.

2.4 The clflush Instruction

The x86 clflush instruction invalidates a specific address from all

levels of the cache hierarchy [18]. The invalidation is broadcasted

throughout the cache coherence domain. If, at any cache, the line

is dirty, it is written to memory before invalidation. In user space,

clflush is used to handle memory inconsistencies such as in memory-

mapped I/O and self-modifying codes. In kernel space, clflush is

used for memory management, e.g., to flush from the caches all the

lines belonging to a page that is being swapped out.

In Intel processors, a user thread can use clflush to flush readable

and executable pages. This enables cache-based side channel attacks,

as a spy can flush pages that it shares with a victim — e.g., a shared

library. This attack has been reported for Intel [50], AMD [20], and

ARM [28] processors.

3 ATTACK ANALYSIS
victim’s
actions

spy’s
actions In this section, we analyze the two types of cache attacks based on

probe
address

conflict
address

Time

access ---

analyze:

no

analyze:

the Eviction step.

 Conflict-Based Attacks

We argue that all successful conflict-based attacks share two traits:

(1) they generate inclusion victims in the private cache of the core

running the victim thread, and (2) they exploit modern cache line

replacement policies that do not properly defend against malicious

creation of inclusion victims.
Consider the first trait. Existing conflict-based attacks generate

t6 --- reload  miss
inclusion victims in the private cache of the victim process’ core.

Figure 1: Evict+reload attack example.

In the Analysis step (time t3), the spy accesses the probe address

and measures its access latency. If, as is shown in the figure, the

victim accessed the probe address during the waiting interval, the

spy will get a cache hit. The next three steps (times t4, t5, and t6)

repeat the Eviction, Wait, and Analysis steps. This time, the victim

does not access the probe address and the spy records a cache miss.

The latency of the reload access is longer than before.

2.3 Inclusion Victims

In this paper, we focus on attacks leveraging a shared cache in an

inclusive cache hierarchy. The victim process and the spy process(es)

all run on different cores. Each core has one or more levels of private

caches, and shares a lower level of cache (i.e., farther from the

CPU) with all the other cores. The private higher-level caches must

contain a subset of the lines held in the shared cache level [2]. In

this environment, there are inclusion victim lines. These are lines

that need to be evicted from a private cache because they are being

displaced from the shared cache due to conflicts there.

Some authors have studied the impact of inclusion victims on

performance (e.g., [7, 22]). In most designs, the cache replacement

algorithm in the shared cache only uses information on shared cache

hits and misses, and is oblivious of hits in the private caches. The

This is because the duration of an attack cycle between consecutive

Eviction steps is very short — on the order of several thousand

cycles. Attacks use such short cycles to reduce the noise in the

Analysis step. As a result, if the victim accesses the probe addresses

during the Wait step, then such addresses will typically remain in the

victim’s private cache by the next Evict step. Hence, when the spy

performs the Evict step, it generates inclusion victims in the private

cache of the victim’s core.

Further, we note that there are no reported conflict-based at-

tacks that work on exclusive cache hierarchies. We checked all

existing attacks and found no exceptions. In processors such as the

ARM Cortex-A53, which have an inclusive instruction cache and

an exclusive data cache, existing attacks only target the instruction

cache [28].

The second trait concerns the fact that deployed cache line replace-

ment algorithms and deployed algorithms for inserting referenced

lines in the replacement priority list, do not take into consideration

the possible creation of inclusion victims. This makes commercial

systems vulnerable to conflict-based attacks.

Recent proposals (e.g., [23, 32, 41, 48]) take into account the

requesting core ID when deciding what line in the set to replace, or

what priority in the replacement list to assign to the referenced line.

However, they do it to improve resource allocation or to enhance

performance, and do not try to eliminate inclusion victims. Only

t0

t1 --- evict

t2 access wait

t3 reload  hit

t4 --- evict

t5 access wait

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

236

Step 1 Step 2 Step 3

①

No more
candidate
lines

No

No more
candidate
lines

No
Yes

①

Yes

Yes
③ ⑤

No

No Yes

⑧ ⑧

④ ②

⑥

No

⑦

⑨

Yes

⑩

the TLA cache management proposal [22] uses some hints that try

to minimize the probability of creating inclusion victims. However,

since TLA is focused on performance, it does not guarantee the

elimination of inclusion victims and, hence, cannot provide security

guarantees.

3.2 Flush-Based Attacks

Flush-based attacks rely on the clflush instruction to evict a victim’s

probe addresses from the cache. Entirely disabling the use of such

instruction is impractical, however, due to both legacy issues and

valid use cases. However, we make a key observation about the

legitimate uses of clflush: in user mode, clflush is only really needed

in uses that update memory locations. Specifically, it is needed to

End

① More lines to consider?

End

End End

⑥ Increment the alarm counter

handle the case when the value of a location in caches is more up-to-

date than the value of the same location in main memory. In such

cases, clflush brings the memory to the right state.

We argue that there is no need to use clflush in user mode for

pages that are read-only or executable, such as those that contain

②④ Obtain information on the presence of
the line in private caches
③ Is the line in any private cache?
⑤ Is the line present only in the requester’s
private cache?

⑦ Evict a random line

⑧ Evict the selected line
⑨ Is alarm counter > threshold?
⑩ Generate interrupt

shared library code. Allowing the use of clflush in these pages only

makes the system vulnerable to flush-based attacks.

4 SHARP DESIGN

We propose a novel approach to defend against cache-based side

channel attacks that is highly effective, induces negligible average

performance degradation, and requires minimal hardware modifi-

cations and no code modifications. The approach, called Secure

Hierarchy-Aware cache Replacement Policy (SHARP) is composed

of a new cache replacement scheme to protect against conflict-based

cache attacks, and a slightly modified clflush instruction to pro-

tect against flush-based cache attacks. In the following, we discuss

SHARP’s two components, and then give some examples of de-

fenses.

 Protecting Against Conflict-Based Attacks

To protect against conflict-based attacks, SHARP’s main idea is to

alter a shared cache’s replacement algorithm to minimize the number

of inclusion victims that a process induces on other processes. The

goal is to prevent a spy process from replacing shared-cache lines

from the victim process that would create inclusion victims in the

private caches of the victim process’ core. The result is that the spy

cannot create a conflict-based cache attack.

Assume that a requesting process R (potentially a spy) wants to

load a line into a set of the shared cache that is full. The hardware

has to find a victim line to be evicted. The high level operation of

the SHARP replacement algorithm is shown in Figure 2. It has three

steps. In Step 1, SHARP considers each line of the set at a time (①),

in the order based on its replacement priority. For each line, it checks

if the line is in any private cache (②)–(③). As soon as a line is found

that is not in any private cache, it is used as the replacement victim

(⑧). Victimizing this line will not create any inclusion victim. If no

such line is found, the algorithm goes to Step 2.

In Step 2, SHARP considers again each line of the set at a time

(①), in the order based on its replacement priority. For each line, it

checks if the line is present only in the private cache of R (④)–(⑤).

As soon as one such line is found, it is used as the replacement

victim (⑧). Evicting this line will at worst create an inclusion victim

Figure 2: SHARP replacement algorithm.

in R. No other process will be affected. If no such line is found, the

algorithm goes to Step 3.

In Step 3, SHARP increments a per-core local alarm event counter

(⑥) and selects a random line as the replacement victim (⑦). In this

case, SHARP may create a replacement victim in a process that is

being attacked. For this reason, when the alarm event counter of any

core reaches a threshold (⑨), a processor interrupt is triggered (⑩).

The operating system is thus notified that there is suspicious activity

currently in the system. Any relatively low value of the threshold

suffices, as a real spy will produce many alarms to be able to obtain

any substantial information.

From this discussion, we see that SHARP has very general appli-

cability, requires no code modification (unlike [24, 29]), and does

not partition the cache among processes (unlike [8, 46]). It allows

multiple processes to dynamically share the entire shared cache,

while transparently protecting against conflict-based side-channel

attacks.

SHARP requires hardware modifications to implement its replace-

ment policy. Specifically, SHARP must be aware of what lines within

the shared cache are present in the private caches. Such information

is needed in operations ② and ④ of Figure 2. In the subsequent

subsections, we present three different ways of procuring this infor-

mation.

 Using Core Valid Bits. In SHARP, each line in the shared

cache is augmented with a bitmap with as many bits as cores.

The bit for core i is set if the line is present in core i’s

private cache. These are the Presence bits used in directory-

based protocols [26]. For example, in Intel, they are used in

multicores since the Nehalem microarchitecture [45], where

they are called Core Valid Bits (CVB). In this first design,

SHARP simply leverages these bits to deter- mine the

information needed in operations ② and ④ of Figure 2.

Note, however, that these bits carry conservative information.

This means that if bit i is set, core i may have the line in its

private cache, while if bit i is clear, core i is guaranteed not

to have the line in its private cache. Such conservatism stems

from silent evictions of non-dirty lines from private caches;

these evictions do not update

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

237

the CVB bits. As a result, the CVB bits will still show the evicting

core as having a copy of the line in its private cache. Overall, this

conservatism will cause Steps 2 and 3 in Figure 2 to be executed

more often than in a precise scheme. However, correctness is not

compromised.

 Using Queries. A shortcoming of the previous design is that it

often ends-up assuming that shared cache lines are present in more

private caches than they really are. As a result, a process may

unnecessarily fail to find a victim in Step 1 and end-up victimizing

its own lines in Step 2, or unnecessarily fail to find a victim in Step

2 and end-up raising an exception.

To solve this problem, this second SHARP design extends the

first one with core queries. Specifically, Step 1 in Figure 2 proceeds

as usual; it often finds a victim. In Step 2, however, as each line is

examined in order based on its replacement priority, the SHARP

hardware queries the private caches of the cores that have the CVB

bit set for the line, to confirm that the bit is indeed up to date.

The CVBs of the line are refreshed with the outcome of the query.

With the refresh, the CVBs may show that, in reality, the line is

in no private cache, or only in the private cache of the requesting

processor. In this case, the line is victimized and the replacement

algorithm terminates; there is no need to examine the other lines.

As a line’s CVBs are refreshed, the line is considered to be ac-

cessed, and is placed in its corresponding position in the replacement

priority. This is done to ensure that such a line is not considered and

refreshed again in the very near future.

This design generally delivers higher performance than the first

one. The reason is that the queries of private caches refresh the CVB

bits, obtaining a more accurate state of the system for the future.

Note that the queries are typically hidden under the latency of the

memory access that triggered them in the first place.

Similar query-based schemes have been proposed in the past.

They have been used to reduce inclusion victims with the aim of

improving performance [22].

 Using Core Valid Bits and Queries. A limitation of the

previous design is that it does not scale well. For multicores with

many cores, the latency of the queries may not be hidden by the

cache miss latency. Moreover, the traffic induced by the queries may

slow down other network requests. Consequently, we present a third

SHARP design that reduces the number of queries.

Specifically, in Step 2 of Figure 2, SHARP only sends queries for

the first N lines examined. For the remaining lines in the set, SHARP

uses the CVBs as in the first scheme. As usual, Step 2 finishes as

soon a victim line is found. There are no other changes relative to

the second design.

 Protecting Against Flush-Based Attacks

As argued in Section 3.2, there is no need to use clflush in user mode

for pages that are read-only or executable. Hence, in user mode,

SHARP only allows clflush to be performed on pages with write

permissions.

With this restriction, sharing library code between processes and

supporting page deduplication do not open up vulnerabilities to flush-

based attacks. Specifically, if spy and victim process share library

code and the spy invokes clflush, the spy will suffer an exception

because the addresses are execution-only. Hence, the victim process

will not suffer inclusion victims in its cache. Similarly, if spy and

victim share a deduplicated page and the spy invokes clflush, since

the page is marked copy-on-write, the OS will trigger a page copy.

All subsequent clflushes by the spy will operate on the spy’s own

copy. As before, the attack will be ineffective.

SHARP allows clflush to execute unmodified in kernel mode, as

it is necessary for memory management.

 Examples of Defenses

We give two examples to show how SHARP can successfully de-

fend against conflict-based attacks. In the examples, victim and spy

share a probe address, and the spy uses the evict+reload attack (Sec-

tion 2.2). Private caches are 4-way set-associative, and the shared

one is 8-way. We consider first a single-threaded spy and then a

multi-threaded spy.

 Attack Using a Single-Threaded Spy. Figure 3 shows the

cache hierarchy, where the victim runs on Core 0 and the spy on

Core 1. In Figure 3(a), the victim has loaded the probe address, and

the spy has loaded four lines with conflict addresses. In Figure 3(b),

the spy loads four more lines with conflict addresses. Since the

corresponding set in the shared cache only had three empty lines, one

of the existing lines has to be evicted. SHARP forces the eviction of

one of the old lines of the spy — not the one with the probe address.

Cache 0 Cache 1 Cache 0 Cache 1

line with probe address

lines with conflict addresses

(a) (b)

Figure 3: SHARP defending against a single-threaded attack.

 Attack Using a Multi-Threaded Spy. Figure 4 shows a cache

hierarchy with four private caches, where the victim runs on

Core 0 and three spy threads run on Cores 1, 2, and 3. In the

figure, the victim has loaded the probe address, and the spy threads

tried to evict it. Spy 1 loaded four conflicting lines, and Spy 2 three

conflicting lines. If Spy 2 now loads another conflicting line, it will

only victimize one of its own lines. The same is true for Spy 1.

SHARP is protecting the probe address.

Cache 0 Cache 1 Cache 2 Cache 3

line with probe address

Lines with conflict addresses

Figure 4: SHARP defending against a multi-threaded attack.

To have a chance to evict the probe address, a third Spy thread

(Spy 3) needs to load a conflicting line. However, such access will

only evict a random line in the set, and it will increment the alarm

counter. Additional lines loaded by Spy 3 will only victimize Spy

3’s line. To be able to cause multiple random replacements, the Spy

threads must be highly coordinated to ensure that, for each round

of attack, at least one Spy thread does not occupy any line in the

corresponding shared cache set.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

238

SHARP makes it very difficult for a multi-threaded spy to get

victim’s information through random replacements and, at the same

time, not be detected. Specifically, the timing of the requests from

many spy threads needs to be finely coordinated, to ensure that, at

every round of attack, at least one spy thread does not occupy any

line in the shared cache set. Second, spies need to handle and tolerate

the unavoidably high noise, as they try to distinguish between misses

caused by other spies and by the victim. Third, spies suffer from

a high risk of being detected, as every single random eviction will

increment the alarm counter. For these reasons, SHARP is highly

effective against multi-threaded attacks.

5 DISCUSSION

 Handling Related Attacks

To put SHARP in perspective, we examine how it handles two

additional situations.

 Initial Access Vulnerability. There is one type of cache-

based side channel attack where the spy simply wants to know

whether the program execution loaded a given probe address. For

example, the spy repeatedly loads the probe address and evicts it,

while timing the latency of the load. After the victim loads the probe

address, the load by the spy is fast because it hits in the cache. We

call this vulnerability the Initial Access vulnerability. The SHARP

designs that we have presented are not able to thwart it. This is

because, in these attacks, the spy does not need to evict the lines that

have been accessed by the victim.

An attack targeting this general vulnerability has been imple-

mented and called the Cache Collision attack [4]. The Initial Access

vulnerability can be thwarted by adopting the preloading techniques

proposed in [25, 29]. They involve loading into the cache all the

security-sensitive addresses, so that the spy cannot know which ad-

dress the victim really needs to access. Such loading can be done

with plain loads or with prefetches. SHARP can use such techniques

to eliminate the Initial Access vulnerability.

 Exploiting Private Cache Conflicts. Since the private cache

queries. The CVBs are already present in Intel multicores to support

cache coherence, and can be reused. In directory-based multiproces-

sors that use limited-pointer directories, SHARP can be modified to

also reuse the hardware.

To support queries, SHARP adds two additional messages to the

coherence protocol, namely a query request and a query reply. The

cache controller needs corresponding states to handle the two new

messages. Such modification has also been used by Intel researchers

to improve cache management [22].

SHARP induces negligible average performance degradation.

This is because, unlike schemes that explicitly partition the shared

cache among threads (e.g., [8, 46]), SHARP allows multiple threads

to dynamically share a cache flexibly. In addition, the queries are

performed in the background, in parallel to servicing a cache miss

from memory. In practice, the great majority of the replacements

that use queries are satisfied with the first query.

It can be argued that, in some cases, SHARP will cause a thread

to be stuck with a single way of the shared cache, and repeatedly

victimize its own private cache lines. This may be the case with

the victim thread in Figure 4. While such case is possible, it is rare.

Recall that the lines in a set in the private cache can map to multiple

sets in the bigger, shared cache (say around 8 or so). The pathological

case happens when many referenced lines across all cores map to

the same set in both private and shared caches, and the shared-cache

associativity is not enough. While possible, this case is rare, only

temporary, and only affects the relevant cache set.

6 EXPERIMENTAL SETUP

To evaluate SHARP, we modify the MARSS [38] cycle-level full-

system simulator. We model a multicore with 2, 4, 8, or 16 cores.

Each core is 4-issue and out-of-order, and has private L1 and L2

caches. All cores share a multi-banked L3 cache, where the attacks

take place. The chip architecture is similar to the Intel Nehalem [45].

The simulator runs a 64-bit version of Ubuntu 10.4. Table 2 shows the

parameters of the simulated architecture. Unless otherwise indicated,

caches use the pseudo-LRU replacement policy.

used by the victim process has limited size and associativity, it is

possible that a probe address gets evicted due to lack of space. After

this happens, the SHARP designs that use queries may detect that

the line is no longer in the private cache and pick it as a replacement

victim in the shared cache. Hence, it is theoretically possible for a

spy to exploit the capacity and conflict misses in the private cache of

the victim to bypass SHARP’s protection and mount a cache-based

side channel attack.

In practice, mounting such an attack is very difficult. The reason

is that the spy has no control on the way that lines evict each other in

the private cache of the victim. In addition, the spy can at best find

out when a line with the probe address was evicted, but not when

the probe address was last accessed before the eviction. If knowing

when a line was evicted was enough to mount an attack, there would

probably be proposals of conflict-based attacks on non-inclusive

caches, which we have not seen yet.

 Hardware Needs & Performance Impact
SHARP has modest hardware requirements. As per Section

4.1, it needs presence bits in the shared cache (i.e., the CVBs)

and cache

Table 2: Parameters of the simulated architecture.

We evaluate the 7 configurations of Table 3, which have different

L3 line replacement policies: baseline uses the conventional pseudo-

LRU policy; cvb, query, and SHARPX use the SHARP designs of

Sections 4.1.1, 4.1.2, and 4.1.3, respectively. SHARPX includes 4

configurations (SHARP[1-4]), which vary based on the maximum

number N of queries emitted. Recall that, for a given set, a query

needs to be fully completed before a second one can be initiated.

Parameter Value

Multicore 2–16 cores at 2.5GHz

Core 4-issue, out-of-order, 128-entry ROB

Private L1
I-Cache/D-Cache

32KB each, 64B line, 4-way,
Access latency: 1 cycle

Private L2 Cache 256KB, 64B line, 8-way,
Access latency: 5 cycles after L1

Query from L3 to L2 3 cycle network latency each way

Shared L3 Cache 2MB bank per core, 64B line, 16 way,
Access latency: 10 cycles after L2

Coherence Protocol MESI

DRAM Access latency: 50ns after L3

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

239

mul

mul

sqr

35000 35020 35040 35060 35080 35100

Time Slot Number

(a) Using baseline.

sqr

1000 1020 1040 1060 1080 1100

Time Slot Number

(b) Using SHARP4.

Figure 5: Cache hits on the probe addresses by the spy process in GnuPG.

a dot represents a cache hit in the reload of the corresponding probe

address.

In baseline, when a hit occurs, it is because the victim has ac-

cessed the probe address during the interval between evict and reload.

In Figure 5(a), we see the pattern of victim accesses to sqr and mul.

Table 3: Simulated L3 line replacement configurations.

7 EVALUATION

 Defense Analysis

In this section, we evaluate the effectiveness of SHARP against two

real cache-based side channel attacks. We implement the attacks

using evict+reload, which consists of the spy evicting the probe

address and then accessing it. If, in between, the victim has accessed

the probe address, the spy’s reload access hits in the cache; otherwise,

the spy’s reload access misses.

To achieve page sharing between spy and victim, the spy mmaps

the victim’s executable file or shared library into the spy’s virtual

address space. To select conflict addresses, the spy first accesses

the system files (i.e., /proc/$pid/pagemap on Linux) to identify the

physical addresses of probe addresses. It then selects 16 addresses

that map to the same L3 set as each of the probe addresses to form an

eviction set. When performing the evict operation, the spy accesses

the 16 addresses twice to ensure that the probe address is replaced.

When doing the reload operation, the spy accesses the probe address

and measures the access time using rdtsc. Based on the time mea-

sured, it determines if it is an L3 hit. If so, it knows that the address

has been accessed by the victim.

We measure the L3 hit and miss time for our architecture. We

find that, on average, an L3 hit takes 48 cycles, and an L3 miss 170

cycles. Hence, we use 100 cycles as a threshold to decide if it is a

hit or a miss.

In the following attacks, we launch the victim process on one

core and the spy on another. We show results for the SHARP4 con-

figuration; the other configurations work equally well in terms of

defense.

 Defending against Attacks on GnuPG. Our first attack ex-

ample targets GnuPG, a free implementation of the OpenPGP stan-

dard. The modular exponentiation in GnuPG version 1.4.13 uses a

simple Square-and-Multiply algorithm [9]. The calculation is shown

in Algorithm 1, and is described in Section 2.1.

In this attack, the spy divides the time into fixed time slots of

5,000 cycles, and monitors for 10,000 time slots. In each time slot,

it evicts and reloads two probe addresses: the entry points of the sqr

and mul functions (Algorithm 1). Figure 5 shows the result of 100

time slots for the baseline and SHARP4 configurations. In the figure,

When a sqr hit is followed by a mul hit, the value of the bit in the

exponent vector is 1. The figure highlights three examples of this

case with a shaded vertical pattern. When a sqr hit is not immediately

followed by a mul hit, the value of the bit in the exponent vector is

0. The figure highlights two examples of multiple sqr hits in a row

with a shaded horizontal pattern. In some cases, the timing is such

that the evict follows the victim’s access. In that case, the reload may

miss an access. The figure highlights one such example with a circle.

Even with some such misses, the spy can successfully attain most

of the bits in the exponent vector, which is enough for the attack to

succeed.

Consider now SHARP4. The first time that the victim calls sqr

and mul, the probe addresses are loaded into the shared cache and

into the victim’s private cache. Then, SHARP4 prevents the spy from

evicting the probe addresses from the shared cache. As a result, every

single reload by the spy will hit in the cache. The result, as shown in

Figure 5(b), is that the spy in unable to glean any information from

the attack.

 Defending against Attacks on Poppler. Our second attack

example targets Poppler, a PDF rendering library that is widely used

in software such as Evince and LibreOffice. We select pdftops as

the victim program. Pdftops converts a PDF file into a PostScript

file. The execution of pdftops is very dependent on the input PDF

file. Hornby et al. [15] design an attack that probes the entry points

of four functions in pdftops that allow the attacker to distinguish

different input PDF files with high fidelity:

• Gfx::opShowSpaceText(Object*, int)

• Gfx::opTextMoveSet(Object*, int)

• Gfx::opSetFont(Object*, int)

• Gfx::opTextNextLine(Object*, int)

Their attack consists of three stages: training, attack, and identifica-

tion. In the training stage, they collect the probing address sequence

for different input PDF files multiple times, to obtain the unique

signature for each file. In the attack stage, the spy records the probe

address sequence of the victim as it executes pdftops with an input

PDF file. In the identification stage, the spy computes the Leven-

shtein distance1 [27] between the victim’s probe sequence and all of

the training probe sequences. The training sequence with the small-

est Levenshtein distance to the victim’s is assumed to correspond to

1 Levenshtein distance is the smallest number of basic edits (single-character insertions,

deletions, and replacements) needed to bring one string to the other.

Config. Line Replacement Policy in L3

baseline Pseudo-LRU replacement.

cvb Section 4.1.1 design: Use CVBs in both Step 1 and 2.

query Section 4.1.2 design: CVBs in Step 1 & queries in Step 2.

SHARPX Section 4.1.3 design: CVBs in Step 1. In Step 2, limit the
max number of queries to X, where X = 1, 2, 3, or 4.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

240

TextNextLine

SetFont

TextMoveSet

ShowSpaceText

29500 29550 29600 29650 29700 29750 29800

Time Slot Number

TextNextLine

SetFont

TextMoveSet

ShowSpaceText

30000

30050

30100

30150

Time Slot Number

30200

30250

30300

(a) Using baseline. (b) Using SHARP4.

Figure 6: Cache hits on the probe addresses by the spy process in Poppler.

the input file that the victim used. By using this approach, they can

reliably identify 127 PDF files on a real machine.

In our attack, the spy monitors the entry points of those functions

using evict+reload. The spy divides time into fixed time slots of

10,000 cycles each. During each time slot, it evicts and reloads the

4 probe addresses. Figure 6 shows the reload hits in 300 slots. In

baseline (Figure 6(a)), we can clearly monitor the execution of the 4

functions over time. Since each input PDF file results in a different

execution order and frequency for these functions, the pattern can

be used as a signature to uniquely identify the input file. In SHARP4

(Figure 6(b)), the reloads always hit, which makes it impossible to

distinguish different input files by their probed cache behavior.

 Performance Impact

In this section, we evaluate the performance impact of SHARP

using both mixes of single-threaded applications (SPECInt2006 and

SPECFP2006 [14]), and multi-threaded applications (PARSEC [3]).

 Single-Threaded Application Mixes. We start by evaluat- ing

mixes of 2 SPEC applications at a time, using 2 cores with a total L3

size of 4MB. To choose the mixes, we use the same approach as

Jaleel et al. [22]. We group the applications into three categories

according to their cache behavior [21]: SW (small working set), MW

(medium working set), and LW (large working set). SW applications,

such as sjeng, povray, h264ref, dealII, and perlbench, fit into the L2

private caches. MW applications, such as astar, bzip2, calculix, and

gobmk, fit into the L3. Finally, LW applications, such as mcf and

libquantum, have a footprint larger than the L3. We choose a set

of mixes similar to Jaleel et al. [22], which the authors suggest are

representative of all mixes of the SPEC applications.

We use the reference input size for all applications. In each ex-

periment, we start two applications and pin them to separate cores.

We skip the first 10 billion instructions in each application; then,

we simulate for 1 billion cycles. We measure statistics for each

application.

Figure 7 shows the IPC of each application in each of the 9

mixes considered. For a given application, the figure shows bars for

baseline, cvb, query, and SHARP[1,4], which are all normalized to

baseline. In the figure, higher bars are better. Figure 8 shows the L3

misses per kilo instruction (MPKI). It is organized as Figure 7 and,

as before, bars are normalized to baseline.

From Figure 7, we see that the performance of the applications

in query and SHARP[1,4] is generally similar to that in baseline.

Hence, SHARP has a negligible performance impact. In addition,

the reason why query and SHARP[1,4] all behave similarly is that,

in the large majority of cases, the first query successfully identifies a

line to evict.

The figure also shows that cvb is not competitive. For applications

such as astar in MIX3 and perlbench in MIX6, cvb reduces the

IPC substantially. The reason is that the imprecision in the CVBs

causes suboptimal line replacement. In particular, threads end up

victimizing themselves. In some of these applications, the relative

MPKI increases substantially (Figure 8). Note, however, that these

are normalized MPKI values. In these SW and MW applications,

while the bar changes may seem large, they correspond to small

changes in absolute MPKI. For example, the MPKI of dealII in

MIX8 is 0.025 in baseline, and it increases by 15x to a still modest

value of 0.392 in cvb.

Some of the mixes expose the effects of SHARP more than oth-

ers. For example, the mixes that contain an SW and an LW appli-

cation are especially revealing (e.g., MIX0). In these workloads,

SHARP[1,4] helps the SW application retain some L3 ways for itself

— rather that allowing the LW application to hog all the L3 ways

as in baseline. As a result, the SW application increases its IPC

and reduces its MPKI (povray in MIX0). At the same time, the LW

application does not change its IPC or MPKI much (mcf in MIX0).

The reason is that the LW application already had a large MPKI, and

the small increase in misses has little effect.

 Multi-Threaded Applications. We now evaluate PARSEC

applications running on 4 cores with a total L3 size of 8MB. The

applications’ input size is simmedium, except for facesim, which

uses simsmall. The applications run for the whole region of interest,

with at least 4 threads, and with threads pinned to cores. For these

applications, we report total execution time, rather than average IPC,

as the performance metric. This is because these applications have

synchronization and, therefore, may execute spinloops.

Figures 9 and 10 show the normalized execution time and L3

MPKI, respectively, for each application and for the average. These

figures are organized as Figures 7 and 8. In Figure 9, lower is better.

In this environment, threads share data and, therefore, a given

cache line can be in multiple private caches. As a result, a thread

may be unable to evict data that it has brought into the shared cache

because another thread has reused the data and is caching it in its

own private cache.

This property may have good or bad effects on the MPKI (Fig-

ure 10). For example, in ferret, the inability of a thread to evict

shared data causes cache thrashing and a higher MPKI. On the other

hand, in fluidanimate, the MPKI decreases slightly.

If we look at the execution time (Figure 9), we see that query

and SHARP[1,4] have similar performance as baseline. The only

difference is a modest slowdown of 6% in canneal. This application

has a large working set, and the new replacement policy ends up cre-

ating more misses which, in turn, slow down the application. Overall,

however, the impact of query and SHARP[1,4] on the execution time

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

241

 baseline cvb query SHARP1 SHARP2 SHARP3 SHARP4

1.2

1.0

0.8

0.6

Figure 7: Normalized IPC of SPEC application mixes with different replacement policies on 2 cores.

3.0

 baseline cvb query SHARP1 SHARP2 SHARP3 SHARP4
7.1 3.8 4.0 15.4 13.8

2.0

1.0

0.0

Figure 8: Normalized L3 MPKI of SPEC application mixes with different replacement policies on 2 cores.

 baseline cvb query SHARP1 SHARP2 SHARP3 SHARP4

1.2

1.0

0.8

0.6

Figure 9: Normalized Execution Time of PARSEC applications with different replacement policies on 4 cores.

 baseline cvb query SHARP1 SHARP2 SHARP3 SHARP4

2.0

1.5

1.0

0.5

0.0

Figure 10: Normalized L3 MPKI of PARSEC applications with different replacement policies on 4 cores.

pov mcf lib sje gob mcf ast pov h26 gob bzi sje h26 per cal gob dea pov

pov mcf lib sje gob mcf ast pov h26 gob bzi sje h26 per cal gob dea pov
MIX0 MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7 MIX8

N
o
rm

a
li
z
e
d
 L

3
 M

P
K
I

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

N
o
rm

a
li
z
e
d

 L
3
 M

P
K
I

N
o
rm

a
li
z
e
d
 I

P
C

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

242

baseline query SHARP4

N
o
r
m

a
li
z
e
d
 L

3
 M

P
K
I

N
o
r
m

a
li
z
e
d
 L

3
 M

P
K
I

1.3

1.2

1.0

0.8

 baseline query SHARP4

2.0

1.5

1.0

0.5

 baseline query SHARP4

0.6 0.0

(a) Normalized IPC. (b) Normalized L3 MPKI.

Figure 11: Normalized IPC and L3 MPKI of SPEC application mixes with different replacement policies on 8 cores.

1.2 2.0

1.0

0.8

1.5

1.0

0.5

0.6 0.0

(a) Normalized IPC. (b) Normalized L3 MPKI.

Figure 12: Normalized IPC and L3 MPKI of PARSEC applications with different replacement policies on 16 cores.

is negligible. cvb is slightly worse. The reason is that the imprecision

of the CVBs causes a higher MPKI and a slightly slower execution.

 Scalability. To assess the scalability of SHARP, we run SPEC

application mixes and PARSEC applications with larger core

counts. Specifically, the SPEC application mixes run on 8 cores with

a total L3 size of 16MB. The pairs of applications in each mix are

the same as in Section 7.2.1, except that we run 4 instances of each

of the two applications. We use the reference input sets, and collect

statistics for 1 billion cycles after all applications have reached the

region of interest.

Figures 11(a) and 11(b) show the normalized IPC and L3 MPKI,

respectively, for the SPEC mixes. For each mix, we show the average

of the 8 applications and, due to space limitations, only the baseline,

query, and SHARP4 configurations. The figures also have bars for

the average of all mixes.

The changes in the line replacement algorithm affect what data

is kept in the L3 caches. Our SHARP designs try to avoid creat-

ing replacement victims in the private caches of other cores. As

shown in Figure 11(a), sometimes this causes the average IPC of the

applications to decrease (povray+mcf) and sometimes to increase

(h264ref+perlbench). However, on average for all the mixes, the

IPC under SHARP4 and query is about 3–4% higher than baseline.

Overall, therefore, we conclude that SHARP has a negligible average

performance impact.

As shown Figure 11(b), the L3 MPKI also goes up and down

depending on the application mix, but the average impact is small.

Note that, for a given application mix, it is possible that SHARP4

increases both the average IPC and the average MPKI. For exam-

ple, in libquantum+sjeng, the average IPC goes up because sjeng’s

IPC increases more than libquantum’s decreases. At the same time,

libquantum’s average MPKI goes up more than sjeng’s goes down.

We also run PARSEC applications on 16 cores with a total L3 size

of 32MB. The applications’ input size is simlarge. Given the long

simulation time, we report statistics for the first 1 billion cycles in

the region of interest. Consequently, we report performance as IPC

rather than execution time. Figures 12(a) and 12(b) show the nor-

malized IPC and L3 MPKI, respectively. The figures are organized

as Figures 11(a) and 11(b).

In Figure 12(a), we see that most of the applications have similar

IPCs for baseline, query, and SHARP4. The one application where

SHARP hurts IPC is canneal. This application has a very large

working set. In baseline, the L3 MPKI of canneal is 5.18, compared

to an MPKI lower than 1 for the other applications. In addition, there

is fine-grained synchronization between threads. Data that is brought

into the cache by one thread is used by other threads. This causes

SHARP to avoid evicting such lines. The result is higher MPKI

(Figure 12(b)) and lower IPC. This behavior is consistent with the

one displayed for 4-core runs (Figure 9). On average across all the

applications, however, query and SHARP4 have negligible impact

on IPC and (to a lesser extent) on MPKI.

 Alarm Analysis

Recall that when SHARP needs to evict a line from the shared

cache, it looks for a victim that is not in any private cache or only

in the private cache of the requester. If SHARP cannot find such a

victim, it increments an alarm counter in the requesting core and

evicts a random line in the set. For normal applications, the number

of alarm increments is low. In an attack, however, the number of

baseline query SHARP4

N
o
r
m

a
li
z
e
d
 I

P
C

N

o
r
m

a
li
z
e
d
 I

P
C

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

243

alarm increments will be very high. To see why, consider a spy that

launches multiple threads to attack a victim by generating accesses

to conflict addresses. Empirically, we find that, in a successful side-

channel attack, the time between consecutive evictions is about

2,500-10,000 cycles. So, the attackers will need to cause an alarm

every 10,000 cycles. In practice, since the operation evicts a random

line in the set, for a 16-way associative cache, they will need 16

times more alarms to evict the victim line. Let us assume that we

have 16 attacker threads and the worst case that each attacker creates

an equal number of alarms. We then have that each attacker thread

will increment its counter at least 100,000 times in 1 billion cycles.

To see how this number compares to the alarm count in a benign

execution, Table 4 shows the maximum alarm count observed per 1

billion cycles in any core while running benign workloads. Specif-

ically, we run the 8-threaded SPEC mixes and 16-threaded PAR-

SEC applications of Section 7.2.3, and try the cvb, query, SHARP1,

SHARP2, SHARP3, and SHARP4 configurations. The last row of

the table shows the maximum number across applications for each

configuration.

Appls. cvb query SHARP1 SHARP2 SHARP3 SHARP4

pov-mcf 285238 89 7285 171 121 84
lib-sje 1618715 1460 4747 2033 1820 1403

gob-mcf 549976 687 10001 1160 1426 1045

ast-pov 22701 19 1774 137 36 7

h26-gob 511 0 16 2 0 0

bzi-sje 38669 7 177 9 7 2

h26-per 60536 1 974 184 6 2

cal-gob 132169 0 37 25 33 1

dea-pov 3 0 0 1 0 0

blackscholes 0 0 0 0 0 0

bodytrack 0 0 0 0 0 0

canneal 153165 37 1192 39 43 37

dedup 145079 13 410 32 18 36

facesim 46409 12 97 32 16 1

ferret 91443 6 2097 102 15 9

fluidanimate 25643 2 556 144 26 3

freqmine 0 0 0 0 0 0

raytrace 10013 1 85 5 1 1

swaptions 0 0 0 0 0 0

x264 35897 2 423 10 5 14

MAX 1618715 1460 10001 2033 1820 1403

Table 4: Alarms per 1 billion cycles in benign workloads.

From the table, we see that cvb can trigger many alarms in multi-

ple workloads. These high numbers are due to the lack of precision of

this replacement policy, where the CVBs can be stale. Consequently,

cvb is not recommended.

With the other policies, the number of alarms decreases substan-

tially. This is because the policies refresh CVBs. For most workloads,

the number of alarms is less than 100 per 1 billion cycles. A few

SPEC mixes, such as libquantum+sjeng and gobmk+mcf reach sev-

eral thousand alarms. These alarms occur because four instances

of memory-intensive applications (libquantum and mcf) cause con-

tention on many cache sets, and force evictions of cache lines belong-

ing to their companion computation-intensive applications (sjeng

and gobmk). SHARP is unable to find a line that only exists in the

requester’s private cache, and the alarm counter is incremented.

PARSEC applications with very little shared data, such as blacks-

holes and swaptions, have no alarms. This is because SHARP can

always find a line that exists only in requester’s private cache. Appli-

cations with a larger amount of sharing between threads (ferret and

canneal) have a relatively higher number of alarms. Even in such

cases, however, the number of alarms is orders of magnitude lower

than when an attack takes place.

Looking at the last row of the table, we see that SHARP4, SHARP3,

and query have less than 2,000 alarms per 1 billion cycles in the

worst case. Of them, SHARP4 is the best design. Hence, we recom-

mend to use SHARP4 and use a threshold of 2,000 alarm events in

1 billion cycles before triggering an interrupt. This is two orders of

magnitude lower than that required for a successful attack.

8 RELATED WORK

Various approaches have been proposed to defend against cache-

based side channel attacks. They can be categorized into two groups:

using cache partitioning to eliminate cache interference, and intro-

ducing runtime diversification to limit the effectiveness of these

attacks.

 Cache Partition Techniques

Cache partitioning prevents a spy from interfering with the victim’s

cache state by using isolation. Each process is provided a separate

portion of the cache. Researchers have proposed both software and

hardware partition techniques [8, 24, 29, 44, 46, 52]. SHARP is

different from these proposals, as it does not partition the cache.

Instead, it changes the line replacement policy to prevent inclusion

victims.

Cache partitioning techniques can be divided into process-based

and region-based, depending on the granularity of the isolation they

support. Process-based cache partitioning divides the cache into mul-

tiple partitions, and assigns each partition to a process or a process

group. Region-based cache partitioning assigns each partition to a

specific region within a program, such as several pages containing

security-sensitive code and data. In both categories, no interference

between partitions is allowed.

Process-based cache partitioning struggles to attain both good

performance and security. Godfrey [8] implements process-based

cache partition using page coloring on Xen. Even though this scheme

can successfully prevent side channel attacks, it has been shown that

it suffers from significant performance degradation when supporting

a high number of partitions. SecDCP [46] is a way-partitioning

scheme where each application is assigned a security class. Based

on the security classes of the applications running concurrently,

the scheme dynamically adjusts the partition layout to ensure an

application cannot attack another application with a higher security

class. However, when applications are in the same security class, the

scheme is forced to use static partitioning. In both of the previous

schemes, selective cache flushing of partitions is required when the

number of processes exceeds the number of partitions available. In

addition, both schemes must disable both deduplication and the use

of shared libraries.

CacheBar [52] periodically and probabilistically configures the

maximum number of ways that a security domain can occupy within

each cache set. However, since an attacker can use multiple coop-

erating threads, CacheBar must limit the number of ways for all

unknown processes. This tends to result in unfairness and perfor-

mance degradation. Moreover, this scheme cannot efficiently support

a large number of security domains.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

244

Several pseudo cache partitioning techniques have been studied

to provide a fair allocation of resources and/or improve the perfor-

mance in a shared cache [23, 32, 41, 48]. They try to minimize the

interference caused by thrashing/streaming threads by either prior-

itizing them during victim selection or inserting their lines with a

lower priority. Such schemes do not provide any security guarantees

and are aimed only at improving the performance of the cache. When

they are modified to provide additional security guarantees [43], the

mechanisms look similar to the ones we discussed earlier.

Region-based partitioning [24, 29, 44] divides the cache into a

secure partition and an insecure partition. The secure partition is

reserved for security-critical addresses, while the insecure partition

is shared by all processes dynamically.

StealthMem [24] uses page coloring. It reserves several stealth

pages via special colors for security-sensitive data. In their scheme,

the operating system ensures that these pages are not evicted by nor-

mal cache accesses. Catalyst [29] leverages Intel’s CAT (Cache Al-

location Technology) hardware mechanism to divide the cache into

secure and non-secure partitions, and uses software page coloring

within the secure partition to block interference between processes

requesting protection. Cache line locking [47] allows processes to

exclusively use the cache at the granularity of a cache line.

These region-based techniques have a relatively smaller perfor-

mance overhead than process-based techniques, since they try to

maximize the number of dynamic accesses to the shared cache while

maintaining sufficient isolation. However, region-based schemes

heavily rely on the programmer to achieve good performance. These

schemes require the programmer to label the secure-sensitive regions

within an application. This is easy to do for cryptography algorithms,

since these public libraries are well studied and verified. However,

for ordinary applications, it is not trivial to locate important data or

execution path regions precisely. SHARP is more practical. SHARP

leverages the private caches to hide secret information from the at-

tackers. It does not need any security analysis or modifications to

existing software.

 Runtime Diversification

Runtime diversification techniques are varied and range from intro-

ducing noise to the system clock [16, 34] to randomizing the address

mapping [47] and adding noise to the cache insertion policy [30].

Each of these approaches has drawbacks: either it cannot defend

against all types of attacks, or it suffers from significant performance

degradation.

Wang and Lee [47] propose to dynamically randomize the mem-

ory line mapping in L1. Liu and Lee [30] propose the Random Fill

Cache for the L1 to defend against reuse-based side channel attacks.

Both approaches may suffer substantial performance degradation if

applied to the much larger last level cache.

FuzzyTime [16] and TimeWarp [34] disrupt timing measurements

by adding noise to the clock or slowing it down. They can protect

against attacks which measure cache access latency and execution

time, but they are unable to prevent alias-driven attacks [13]. Fur-

thermore, they hurt benign programs that require a high-precision

clock.

 Detection Techniques

Several approaches have been proposed to detect cache-based side

channel attacks. Chiappetta et al. [6] detect side channels based

on the correlation of last level cache accesses between victim and

spy processes. HexPADS [39] detects side channel attacks by the

frequent cache misses caused by the spy process. These heuristic

approaches are not robust, and tend to suffer high false positives and

false negatives.

CC-Hunter [5] and ReplayConfusion [49] can effectively detect

cache-based covert channel attacks. However, they may not be effec-

tive for side channel attacks.

SHARP’s alarm mechanisms can effectively detect side channel

attacks that bypassed the first two steps in the SHARP algorithm.

This is because the alarm is incremented every time a spy generates

an inclusion victim in another thread. The threshold rate we use is

two orders of magnitude lower than the rate of evictions required for

a successful attack.

9 CONCLUSION

To combat the security threat of cross-core cache-based side channel

attacks, this paper made three contributions. First, it made an obser-

vation for an environment with an inclusive cache hierarchy: when

the spy evicts the probe address from the shared cache, the address

will also be evicted from the private cache of the victim process,

creating an inclusion victim. Consequently, to disable cache attacks,

the spy should be prevented from triggering inclusion victims in

other caches.

Next, the paper used this insight to defend against cache-based

side channel attacks with SHARP. SHARP is composed of two parts.

It introduces a new line replacement algorithm in the shared cache

that prevents a process from creating inclusion victims in the caches

of cores running other processes. It also slightly modifies the clflush

instruction to protect against flush-based cache attacks. SHARP is

highly effective, needs only minimal hardware modifications, and

requires no code modifications.

Finally, this paper evaluated SHARP on a cycle-level full-system

simulator and tested it against two real-world attacks. SHARP effec-

tively protected against these attacks. In addition, SHARP introduced

negligible average performance degradation to workloads with SPEC

and PARSEC applications.

ACKNOWLEDGMENT

This work was supported in part by NSF under grants CCF 1536795

and CCF 1649432.

REFERENCES
[1] Onur Aciiçmez, Çetin K. Koç, and Jean P. Seifert. 2006. Predicting secret keys

via branch prediction. In Proceedings of the 7th Cryptographers’ Track at the

RSA Conference on Topics in Cryptology. Springer-Verlag, Berlin, Heidelberg,

225–242. https://doi.org/10.1007/11967668_15

[2] J. L. Baer and W. H. Wang. 1988. On the inclusion properties for multi -level cache

hierarchies. In The Conference Proceedings 15th Annual International Symposium

on Computer Architecture. IEEE, 73–80. https://doi.org/10.1109/isca.1988.5212

[3] Christian Bienia, Sanjeev Kumar, Jaswinder P. Singh, and Kai Li. 2008. The

PARSEC benchmark suite: characterization and architectural implications. In

Proceedings of the 17th International Conference on Parallel Architectures and

Compilation Techniques. ACM, New York, NY, USA, 72–81. https://doi.org/10.

1145/1454115.1454128

https://doi.org/10.1007/11967668_15
https://doi.org/10.1109/isca.1988.5212
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

245

[4] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against

AES, In Proceedings of the 8th International Conference on Cryptographic Hard-

ware and Embedded Systems. Cryptographic Hardware and Embedded Systems,

201–215. https://doi.org/10.1007/11894063_16

[5] Jie Chen and Guru Venkataramani. 2014. CC-Hunter: uncovering covert tim-

ing channels on shared processor hardware. In Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Soci-

ety, Washington, DC, USA, 216–228. https://doi.org/10.1109/micro.2014.42

[6] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection

of cache-based side-channel attacks using hardware performance counters. Appl.

Soft Comput. 49, C (Dec. 2016), 1162–1174. https://doi.org/10.1016/j.asoc.2016.

09.014

[7] Katherine E. Fletcher, W. Evan Speight, and John K. Bennett. 1995. Techniques

for reducing the impact of inclusion in shared network cache multiprocessors.

Rice ELEC TR (1995). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

54.6340

[8] Michael M. Godfrey. 2013. On the prevention of cache-based side-channel attacks

in a cloud environment. Master’s thesis. Queen’s University.

[9] Daniel M. Gordon. 1998. A survey of fast exponentiation methods. Journal of

Algorithms 27, 1 (April 1998), 129–146. https://doi.org/10.1006/jagm.1997.0913

[10] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan

Mangard. 2016. Prefetch side-channel attacks: bypassing SMAP and ker-

nel ASLR. In Proceedings of the 2016 ACM SIGSAC Conference on Com-

puter and Communications Security. ACM, New York, NY, USA, 368–379.

https://doi.org/10.1145/2976749.2978356

[11] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: a fast and stealthy cache attack. In Proceedings of the 13th Inter-

national Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer-Verlag New York, Inc., New York, NY, USA, 279–299.

https://doi.org/10.1007/978-3-319-40667-1_14

[12] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template

attacks: automating attacks on inclusive last-level caches. In Proceedings of the

24th USENIX Conference on Security Symposium. USENIX Association, Berkeley,
CA, USA, 897–912. http://portal.acm.org/citation.cfm?id=2831200

[13] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.

Cache storage channels: alias-driven attacks and verified countermeasures. In

IEEE Symposium on Security and Privacy. IEEE, 38–55. https://doi.org/10.1109/

sp.2016.11

[14] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH

Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https://doi.org/10.1145/1186736.

1186737

[15] Taylor Hornby. 2016. Side-channel attacks on everyday applications: distin-

guishing inputs with FLUSH+RELOAD. https://www.blackhat.com/docs/us-

16/materials/us-16-Hornby-Side-Channel-Attacks-On-Everyday-Applications-

wp.pdf. (2016). Accessed on 22 April 2017.

[16] Wei M. Hu. 1992. Reducing timing channels with fuzzy time. Journal of

computer security 1, 3-4 (May 1992), 233–254. http://portal.acm.org/citation.

cfm?id=2699810

[17] R. Hund, C. Willems, and T. Holz. 2013. Practical timing side channel attacks

against kernel Space ASLR. In IEEE Symposium on Security and Privacy. IEEE,

191–205. https://doi.org/10.1109/sp.2013.23

[18] Intel. 2017. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual. https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-

1-2abcd-3abcd.pdf. (2017). Accessed on 22 April 2017.

[19] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: a shared cache

attack that works across cores and defies VM sandboxing – and its application

to AES. In IEEE Symposium on Security and Privacy. IEEE, 591–604. https:

//doi.org/10.1109/sp.2015.42

[20] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross processor

cache attacks. In Proceedings of the 11th ACM on Asia Conference on Computer

and Communications Security. ACM, New York, NY, USA, 353–364. https:
//doi.org/10.1145/2897845.2897867

[21] Ameer Jaleel. 2010. Memory characterization of workloads using instrumentation-

driven simulation. http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf.

(2010). Accessed on 22 April 2017.

[22] Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C. Steely, and Joel Emer.

2010. Achieving non-inclusive cache performance with inclusive caches: temporal

locality aware (TLA) cache management policies. In 43rd Annual IEEE/ACM

International Symposium on Microarchitecture. IEEE, 151–162. https://doi.org/

10.1109/micro.2010.52

[23] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon

Steely, and Joel Emer. 2008. Adaptive insertion policies for managing shared

caches. In Proceedings of the 17th International Conference on Parallel Archi-

tectures and Compilation Techniques. ACM, New York, NY, USA, 208–219.

https://doi.org/10.1145/1454115.1454145

[24] Taesoo Kim, Marcus Peinado, and Gloria M. Ruiz. 2012. STEALTHMEM:

system-level protection against cache-based side channel attacks in the cloud. In

Proceedings of the 21st USENIX Conference on Security Symposium . USENIX As-

sociation, Berkeley, CA, USA, 11. http://portal.acm.org/citation.cfm?id=2362804

[25] J. Kong, O. Aciicmez, J. P. Seifert, and Huiyang Zhou. 2009. Hardware-software

integrated approaches to defend against software cache-based side channel at-

tacks. In IEEE 15th International Symposium on High Performance Computer

Architecture. IEEE, 393–404. https://doi.org/10.1109/hpca.2009.4798277

[26] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John

Hennessy. 1990. The Directory-based Cache Coherence Protocol for the DASH

Multiprocessor. In Proceedings of the 17th Annual International Symposium on

Computer Architecture. ACM, New York, NY, USA, 148–159. https://doi.org/10.

1145/325164.325132

[27] V. I. Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady 10 (Feb. 1966), 707.

[28] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. AR-

Mageddon: last-level cache attacks on mobile devices. In 25th USENIX Security

Symposium, Vol. abs/1511.04897. USENIX Association.

[29] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B. Lee. 2016. CATalyst: defeating last-level cache side channel attacks

in cloud computing. In IEEE International Symposium on High Performance Com-

puter Architecture. IEEE, 406–418. https://doi.org/10.1109/hpca.2016.7446082

[30] Fangfei Liu and Ruby B. Lee. 2014. Random fill cache architecture. In Pro-

ceedings of the 47th Annual IEEE/ACM International Symposium on Microar-

chitecture. IEEE Computer Society, Washington, DC, USA, 203–215. https:
//doi.org/10.1109/micro.2014.28

[31] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015.

Last-level cache side-channel attacks are practical. In Proceedings of the 2015

IEEE Symposium on Security and Privacy. IEEE Computer Society, Washington,
DC, USA, 605–622. https://doi.org/10.1109/sp.2015.43

[32] Wanli Liu and D. Yeung. 2009. Using aggressor thread information to improve

shared cache management for CMPs. In 18th International Conference on Parallel

Architectures and Compilation Techniques. IEEE, 372–383. https://doi.org/10.

1109/pact.2009.13

[33] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power analysis

attacks: revealing the secrets of smart cards . Springer-Verlag New York, Inc.,

Secaucus, NJ, USA. http://portal.acm.org/citation.cfm?id=1208234

[34] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:

rethinking timekeeping and performance monitoring mechanisms to mitigate side-

channel attacks. In Proceedings of the 39th Annual International Symposium on

Computer Architecture. IEEE Computer Society, Washington, DC, USA, 118–129.

http://portal.acm.org/citation.cfm?id=2337173

[35] Michael Neve and Jean P. Seifert. 2007. Advances on access-driven cache attacks

on AES. In Proceedings of the 13th International Conference on Selected Areas in

Cryptography. Springer-Verlag, Berlin, Heidelberg, 147–162. http://portal.acm.

org/citation.cfm?id=1756531

[36] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The spy in the sandbox: practical cache attacks in JavaScript

and their implications. In Proceedings of the 22Nd ACM SIGSAC Conference on

Computer and Communications Security. ACM, New York, NY, USA, 1406–1418.

https://doi.org/10.1145/2810103.2813708

[37] DagArne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-

termeasures: the case of AES. In Topics in Cryptology, David Pointcheval (Ed.).

Lecture Notes in Computer Science, Vol. 3860. Springer Berlin Heidelberg, Berlin,

Heidelberg, Chapter 1, 1–20. https://doi.org/10.1007/11605805_1

[38] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. 2011. MARSS:

a full system simulator for multicore x86 CPUs. In Proceedings of the 48th

Design Automation Conference. ACM, New York, NY, USA, 1050–1055. https:

//doi.org/10.1145/2024724.2024954

[39] Mathias Payer. 2016. HexPADS: a platform to detect "stealth" attacks. In Pro-

ceedings of the 8th International Symposium on Engineering Secure Software

and Systems. Springer-Verlag New York, Inc., New York, NY, USA, 138–154.

https://doi.org/10.1007/978-3-319-30806-7_9

[40] Colin Percival. 2005. Cache missing for fun and profit.

http://www.daemonology.net/papers/cachemissing.pdf. (Oct. 2005). Ac-

cessed on 22-April-2017.

[41] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-based cache partition-

ing: a low-overhead, high-performance, runtime mechanism to partition shared

caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture. IEEE Computer Society, Washington, DC, USA, 423–432.

https://doi.org/10.1109/micro.2006.49

[42] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.

Hey, you, get off of my cloud: exploring information leakage in third-party

compute clouds. In Proceedings of the 16th ACM Conference on Computer

and Communications Security. ACM, New York, NY, USA, 199–212. https:

//doi.org/10.1145/1653662.1653687

[43] Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: scalable and efficient

fine-grain cache partitioning. In Proceedings of the 38th annual international

symposium on Computer architecture, Vol. 39. ACM, New York, NY, USA, 57–68.

https://doi.org/10.1007/11894063_16
https://doi.org/10.1109/micro.2014.42
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6340
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.6340
https://doi.org/10.1006/jagm.1997.0913
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_14
http://portal.acm.org/citation.cfm?id=2831200
https://doi.org/10.1109/sp.2016.11
https://doi.org/10.1109/sp.2016.11
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://www.blackhat.com/docs/us-
http://portal.acm.org/citation.cfm?id=2699810
http://portal.acm.org/citation.cfm?id=2699810
https://doi.org/10.1109/sp.2013.23
https://doi.org/10.1109/sp.2015.42
https://doi.org/10.1109/sp.2015.42
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf
https://doi.org/10.1109/micro.2010.52
https://doi.org/10.1109/micro.2010.52
https://doi.org/10.1145/1454115.1454145
http://portal.acm.org/citation.cfm?id=2362804
https://doi.org/10.1109/hpca.2009.4798277
https://doi.org/10.1145/325164.325132
https://doi.org/10.1145/325164.325132
https://doi.org/10.1109/hpca.2016.7446082
https://doi.org/10.1109/micro.2014.28
https://doi.org/10.1109/micro.2014.28
https://doi.org/10.1109/sp.2015.43
https://doi.org/10.1109/pact.2009.13
https://doi.org/10.1109/pact.2009.13
http://portal.acm.org/citation.cfm?id=1208234
http://portal.acm.org/citation.cfm?id=2337173
http://portal.acm.org/citation.cfm?id=1756531
http://portal.acm.org/citation.cfm?id=1756531
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1007/11605805_1
https://doi.org/10.1145/2024724.2024954
https://doi.org/10.1145/2024724.2024954
https://doi.org/10.1007/978-3-319-30806-7_9
http://www.daemonology.net/papers/cachemissing.pdf
https://doi.org/10.1109/micro.2006.49
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

246

https://doi.org/10.1145/2024723.2000073

[44] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting cache-

based side-channel in multi-tenant cloud using dynamic page coloring. In Pro-

ceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable

Systems and Networks Workshops. IEEE Computer Society, Washington, DC,

USA, 194–199. https://doi.org/10.1109/dsnw.2011.5958812
[45] Ronak Singhal. 2008. Inside Intel core microarchitecture (Nehalem). In 2008

IEEE Hot Chips Symposium (HCS). IEEE, 1–25. https://doi.org/10.1109/hotchips.

2008.7476555

[46] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and G. Edward

Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing chan-

nel protection. In Proceedings of the 53rd Annual Design Automation Conference.

ACM, New York, NY, USA. https://doi.org/10.1145/2897937.2898086

[47] Zhenghong Wang and Ruby B. Lee. 2007. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings of the 34th Annual

International Symposium on Computer Architecture. ACM, New York, NY, USA,

494–505. https://doi.org/10.1145/1250662.1250723

[48] Yuejian Xie and Gabriel H. Loh. 2009. PIPP: promotion/insertion pseudo-

partitioning of multi-core shared caches. In Proceedings of the 36th Annual

International Symposium on Computer Architecture, Vol. 37. ACM, New York,

NY, USA, 174–183. https://doi.org/10.1145/1555815.1555778

[49] Mengjia Yan, Yasser Shalabi, and Josep Torrellas. 2016. ReplayConfusion: de-

tecting cache-based covert channel attacks using record and replay. In 49th An-

nual IEEE/ACM International Symposium on Microarchitecture. IEEE, 1–14.

https://doi.org/10.1109/micro.2016.7783742

[50] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a high resolution,

low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX

Conference on Security Symposium. USENIX Association, Berkeley, CA, USA,

719–732. http://portal.acm.org/citation.cfm?id=2671271

[51] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-

tenant side-channel attacks in PaaS clouds. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security. ACM, New

York, NY, USA, 990–1003. https://doi.org/10.1145/2660267.2660356

[52] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. 2016. A software approach

to defeating side channels in last-Level caches. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. ACM, New

York, NY, USA, 871–882. https://doi.org/10.1145/2976749.2978324

https://doi.org/10.1145/2024723.2000073
https://doi.org/10.1109/dsnw.2011.5958812
https://doi.org/10.1109/hotchips.2008.7476555
https://doi.org/10.1109/hotchips.2008.7476555
https://doi.org/10.1145/2897937.2898086
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1555815.1555778
https://doi.org/10.1109/micro.2016.7783742
http://portal.acm.org/citation.cfm?id=2671271
https://doi.org/10.1145/2660267.2660356
https://doi.org/10.1145/2976749.2978324

