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Abstract— The coherence directory, which contains details on 
the sharing of cache blocks, is one of the main problems with on-
chip coherence in a multicore processor in terms of scaling. To 
reduce area overhead, shadow tags that copy complete private 
cache tag arrays are frequently utilised. However, getting the 
sharing information requires an energy-intensive asso- ciative 
search. A Tagless directory was recently proposed, which uses 
bloom filters to condense the tags in a cache set. To totally avoid 
associative lookup and minimise directory cost, the Tagless 
directory associates the sharing vector with the bloom filter 
buckets. However. With more cores, Tagless still has space and 
energy constraints because it still represents the sharing 
information using a full map sharing vector. 

First, we demonstrate in this work how numerous bloom filters 

basically reproduce the same sharing pattern because of the 

regular nature of applications. We then take advantage of the 

shared pattern and suggest SPATL1 (Sharing-pattern based 

Tagless Directory). By taking use of the sharing pattern similarity, 

SPATL is able to divorce sharing patterns from bloom filters and 

get rid of duplicate sharing patterns. In comparison to Tagless, the 

previous most storage-efficient directory, SPATL offers 34% 

storage savings at 16 cores and works with both inclusive and non-

inclusive shared caches. We investigate a number of methods for 

periodically eliminating false sharing that results from combining 

Tagless and sharing pattern compression, and we show that 

SPATL can achieve the same amount of false sharers as Tagless 

with 5% more bandwidth. Last but not least, we showKeywords: 

Directory coherence, Cache coherence, Multicore scalability, 

Tagless, Bloom Filters 

 
I. INTRODUCTION 

In order to utilize the growing on-chip real estate, designers 

are increasingly turning toward larger numbers of independent 

compute engines or cores, whether homogeneous or heteroge- 

neous. To provide fast data access, data is replicated/cached 

in core-local storage to exploit locality. Further, to ease 

communication among these compute cores, the potentially 

multiple copies of data are often kept coherent in hardware. 

The larger core counts require more bandwidth both for data 

access and to keep the caches coherent. Cache coherence 

needs to track information about the various copies of cached 

blocks in order to keep them consistent with each other. 

A directory is typically used to provide precise information 
 

on the presence of replicas so as to minimize coherence 

communication. 

A typical directory-based coherence protocol [5] maintains 

a bit vector (the sharing pattern) per coherence unit, represent- 

ing the processors that currently share the memory locations, 

resulting in space overhead that is proportional to the number 

of cores and the size of the shared level of memory. By 

limiting the communication to a multicast among the actual 

sharers instead of a broadcast, the bandwidth requirement 

of directory-based protocol scales better than typical snoop- 

based protocols. 

Several optimizations to reduce the area overhead of 

the directory have been proposed. For example, a directory 

cache [1], [15] stores sharing information for a subset of lines 

in the shared memory. A compressed sharer vector [6], [8], 

[16] uses fewer bits to represent sharer information, thereby 

losing some precision in determining the exact sharers. Such 

techniques also can represent only a limited number of shar- 

ing patterns and suffer inelegant sharp performance losses for 

specific types of sharing patterns. Pointers [2], [11] provide 

precise sharing information for a limited number of sharers 

of each cache line, resorting to introducing extra hardware 

and software overhead when the number of sharers exceeds 

the number of hardware-provided pointers. 

Alternatively, shadow tags are used, for example, in Ni- 

agara2 [17], in which the tags from the lower level caches 

are replicated at the shared level. An associative search of 

the shadow tags is used to generate the sharer vector on 

the fly. Although shadow tags achieve good compression by 

maintaining only information for lines present in the lower 

level caches, the associative search used to generate the sharer 

vector is energy hungry, especially at larger core counts. 

Recently, two different approaches have been used to 

achieve directory compression without loss in precision or 

extra energy consumption. The Tagless directory [19] starts 

with the shadow tag design and uses bloom filters per private- 

level cache set to encode the presence of the tags in each 

private-level cache. The buckets in the bloom filter repre- 

sent the sharing pattern. This approach has two advantages, 

namely, it eliminates the energy-hungry on-the-fly sharing 

pattern generation, and the shadow tag space is also no longer 

proportional to the size of the tag. 

SPACE [20] was designed for inclusive caches and lever- 

ages the observation that many memory locations in an 

application are accessed by the same subset of processors and 
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hence have identical sharing patterns. In addition, the number 

of such patterns is small, but varies across applications and 

even across time. SPACE proposes the use of a sharing pattern 

table together with pointers from individual cache lines to the 

table. Graceful degradation in precision is achieved when the 

table’s capacity is exceeded. 

In this paper, we extend the observation made in [20] 

that sharing pattern commonality across memory locations 

can be used to compress the directory without significant 

loss in precision, to apply to non-inclusive caches. Specif- 

ically, we combine the energy and compression benefits of 

the Tagless and SPACE approaches in a system we call 

SPATL (Sharing-pattern based Tagless Directory). As in the 

Tagless approach, tags within individual sets are combined 

in a bloom filter. However, rather than containing sharer 

vectors, the individual buckets in the bloom filter contain 

pointers to a table of sharing patterns. As in SPACE, only 

the sharing patterns actually present due to current access 

to shared data are represented in the sharing pattern table. 

This combination allows directory compression with graceful 

degradation in precision for both inclusive and non-inclusive 

cache organizations. Our results show that the use of a sharing 

pattern table can be used to compress the Tagless directory, 

resulting in compounded area reductions without significant 

loss in precision. SPATL is 66% and 36% the area of the 

Tagless directory at 16 and 32 cores, respectively. We study 

multiple strategies to periodically eliminate the false sharing 

that comes from combining sharing pattern compression with 

Tagless, and demonstrate that SPATL can achieve the same 

level of false sharers as Tagless with 5% extra bandwidth. 

Finally, we demonstrate that SPATL scales even better than 

an idealized directory and can support 1024-core chips with 

less than 1% of the private cache space for data parallel 

applications. 

 
II. BACKGROUND 

In a multicore chip like the one shown in Figure 1, there 

are private caches associated with each core (or set of cores). 

In our baseline design, we also have a shared L2 cache 

that is tiled across the various cores. While conceptually a 

centralized structure, the directory is distributed across the 

various tiles. Each cache block is assigned a home tile and the 

directory associated with the home tile is assigned the task 

of providing sharer information for cache blocks that map 

to that tile. For maximum precision, the coherence directory 

must maintain sharing information for each unique tag in the 

private caches. 

Designs that use an inclusive shared L2 cache piggyback 

on the L2 tags to implement the tags required by the directory. 

This requires the addition of a P bit sharing vector (P : # 

of cores) per L2 tag. Unfortunately, since shared caches are 

many times larger than private caches, many entries contain 

no information. For example, if the Niagara2 (8 cores, 8KB 

L1/core, 4MB shared L2) were to implement an in-cache 

directory it would consume 64KB of space, which is 100% 

of the cumulative size of L1 caches across all the 8 cores. 

An alternative to piggybacking on the L2 tags is to use a 
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Fig. 1: Tiled 16 processor multicore. Coherence directory 

distributed to each tile. 

directory cache to maintain information only for lines present 

in the L1. Since each cache line in each core could be unique, 

to guarantee no loss of information, the directory cache would 

need to contain as many entries as the sum of the number 

of cache lines in each L1, along with an associativity that 

is at least the aggregate associativity of all the L1s (i.e., 

even on the 8 core Niagara2, we would need a 32 way 

directory cache). Practical directory cache designs have much 

lower associativity and pay the penalty of associativity-related 

eviction of directory information for some blocks. While 

recently there have been proposals [7] to use sophisticated 

hash functions to eliminate associativity conflicts, optimizing 

the directory cache organization is a hard problem. 

Many current multicore chips (e.g., Niagara2) use a sim- 

plified form of directory cache consisting of replicas of the 

tag arrays of the L1 cache (i.e., maintain shadow tags). An 

associative search of the shadow tags is used to generate the 

sharer vector on the fly. Although shadow tags achieve good 

compression by maintaining only information for lines present 

in the lower level caches, the associative search used to 

generate the sharer vector imposes significant energy penalty. 

Recently, the Tagless coherence directory [19] was pro- 

posed to eliminate the associative lookup. Instead of repre- 

senting each tag exactly, a bloom filter concisely summarizes 

the contents of each set in every L1 cache. Overall, we would 

need only NL1sets P bloom filters (32–64bits per bloom filter) 

to represent the information in all the L1 caches. The probing 

required per L1 in shadow tags is replaced with a simple read 

of a bloom filter, which eliminates all the complex associative 

search of shadow tags. Unfortunately, for large multicores 

the cost of the bloom filters grows proportionately (similar 

to the sharing pattern vector) and constitutes significant 

overhead. For example, for an 8 core Niagara2, it would 

require 3KB (per hash function), but extrapolating to 1024 

cores, it would require 3MB, which imposes significant area 

and energy penalty for sharing pattern information access. We 

briefly describe the overall architecture of Tagless below and 

highlight the challenges. 

 
A. Tagless Coherence Directory 

Tagless coherence directory uses a set of bloom filters to 

summarize the contents of the cache. Figure 2 shows the 

bloom filter associated with each set of the private L1 cache. 

Essentially, the Tagless directory consists of a NL1sets P 

set of bloom filters (NL1sets : number of sets in the L1 
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Fig. 2: Tagless Coherence Directory [19]. 

cache. P : Number of cores). Each bloom filter per set is a 

partitioned design that consists of hashN hash functions each 

of which map to a k bucket (k bitmap) filter. If the size of 

the bloom filter is comparable to a cache tag, overall this 

essentially improves the space over shadow tags by a factor 
  NL1ways  

#o f hash f unctions 

Tagless directory uses this representation to simplify the 

insertion and removal of cache tags from the bloom filter. 

Each bloom filter summarizes the cache tags in a single cache 

set. Inserting a cache block’s address requires hashing the 

address and setting the corresponding bucket (note that each 

address maps to only one of the buckets). Testing for set mem- 

bership consists of reading the bucket corresponding to the 

cache tag in the set-specific bloom filter of each processor and 

collating them to construct the sharing pattern (in Figure 2, 

each bucket represents a sharing pattern). Having a bloom 

filter per set also enables Tagless directory to recalculate 

the filter directly on cache evictions. While conceptually, 

the Tagless directory consists of NL1sets P bloom filters, 

these filters can be combined since each core uses the same 

bloom filter organization. A given cache block address maps 

to a unique set and a unique bucket in the bloom filter. 

Combining the buckets from all the bloom filters, a P bit 

sharing pattern is created, which is similar to the sharing 

pattern in a conventional full-map directory. 

Multiple addresses could potentially hash to the same 

bucket and hence introduce false positives. Using multiple 

hash functions enables addresses to map to different buckets 

and possibly eliminate false positives. Simply ANDing the 

sharing vector from the buckets that an address maps to 

in each hash function will eliminate many false positives. 

Consider an implementation with hashN hash functions, k 

buckets per hash function, Nsets L1 cache sets, and P cores. 

The Tagless directory requires a P-bit pattern for each of the 

k buckets, giving rise to an overhead of hashN * k * P * Nsets 

bits. 

Scalability Challenges. For large multicore chips (256+ 

cores) the storage overhead of the Tagless directory is dom- 

inated by P. This introduces challenges to scalability with 

Fig. 3: Left (a): Storage overhead of Tagless directory per 

core; X axis: # of cores (Bloom Filter size); Y axis: KB of 

coherence directory per core. Right (b): Access energy of 

Tagless directory tile per core; X axis: (# of cores); Y axis: 

pJ. 

increasing core counts. Furthermore, reading a large P-bit 

wide vector from this coherence directory will not be energy 

efficient. Figure 3a shows the per-core area of the Tagless 

directory while increasing the number of cores. Since the 

number of addresses that are mapped to a bloom filter grows 

with the number of cores, the possibility of false positives 

increases when using a fixed bloom filter size. We therefore 

increase the number of buckets per bloom filter so as to 

maintain the same level of false positives as our baseline 

design. If we project to a Niagara2 design with a number of 

cores from 256–2048, the Tagless directory adds significant 

overhead. At 2048 cores, the total directory overhead is 

16MB, which is 100% overhead since the aggregate size 

of all the L1s in this system is 16MB. We assume that the 

directory is uniformly distributed amongst all the cores and 

hence the per-core overhead grows more gradually from 2KB 

at 256 cores to 8KB at 2048 cores. Figure 3b plots the energy 

overhead of reading from a directory tile. The size of sharing 

pattern block read varies linearly with the cores. We see a 

significant increase in the read energy from 5pJ at 256 cores 

to 12pJ at 2048 cores. 

III. SPATL : 

HYBRID COHERENCE DIRECTORY 

A. Sharing Patterns in the Directory 

At PACT 2010, the SPACE [20] design was proposed as 

a promising technique that compresses directory space for 

inclusive cache designs. SPACE was based on observations of 

application semantics that showed the regular nature of inter- 

thread sharing, resulting in many cache blocks having the 

same or similar sharing patterns. Thus, the in-cache directory 

has a lot of redundancy and replicates the same pattern for 

many cache blocks. SPACE decouples the sharing vectors 

from the L2 tag and stores the unique sharing patterns in 

a pattern table; multiple cache lines with the same pattern 

would point to a common entry in the pattern table. The 

sharing bit vector per cache tag is replaced with a pointer 

whose size is proportional to the number of unique sharing 

patterns. Unfortunately, while this provides better scalability 

than the base in-cache directory design (reduces the directory 

overhead to 40KB for the Niagara2), lines not present at 

the L1s continue to bear the pointer overhead, which limits 

the overall benefit. 

In this work, we extend the idea of eliminating sharing 

pattern redundancy to the Tagless buckets. Figure 4a shows 
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the maximum number of patterns displayed in an application 

during its execution, with and without the Tagless directory 

(system configuration described in Table I in Section V). The 

relatively small number of patterns present in the applications 

compared to the total number of possible patterns suggests 

an opportunity to design a directory that holds only the 

sharing patterns present. In the Tagless directory, each bucket 

combines and holds the union of sharing patterns of cache 

blocks that map to that bucket. This in some cases causes 

an overall increase in the total number of patterns since two 

addresses with different sharing patterns could map to the 

same bucket (causing false positives). Despite this possibility, 

as the figure shows, the number of sharing patterns is much 

smaller than the total number of buckets (65,536 in our 

experiments), indicating that the same sharing pattern gets 

replicated across multiple hash table buckets. 
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Fig. 5: Hybrid Tagless-Pattern directory approach. Each 

bucket includes a pointer to the sharing pattern. 

directory. Some cache lines with private patterns are tagged 

as 2-sharer or 3-sharer because of conflicts in Tagless’s bloom 

filter buckets. 

Based on our analysis, we observe that despite the pos- 

sibility of conflicts, the common sharing patterns across 

many cache blocks continues to be exhibited across many 

buckets in the Tagless approach. We also observe that the 

number of patterns that are frequently referenced is small 

(as corroborated by results in [20]). In our experiments, the 

number of patterns that applications exhibit is 5.6% (Apache, 

SPECjbb), 0.8% (SPLASH2), and 3.8% (PARSEC) of the 

total number of buckets in the Tagless directory. Thus, we 

propose a solution to enable Tagless directory scalability to a 

large number of cores by eliminating the redundant copies 

of sharing patterns. The compression of sharing patterns 

will complement the compression achieved by the Tagless 
directory. 
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B. SPATL Architecture 

As shown in the conventional Tagless directory, every 

bucket in the bloom filter specifies the sharing pattern for 

blocks mapping to that bucket. We propose to decouple the 

sharing pattern for each bucket and hold the different unique 

sharing patterns observed in the Tagless directory in a separate 

pattern directory table. This eliminates redundancy across the 

Tagless directory where the same sharing pattern is replicated 

across different buckets. With the directory table storing the 

patterns, each bucket now includes a pointer to an entry in 
(b) Number of cache blocks for each of N sharers. 

Fig. 4: (a) The maximum number of patterns present for a spe- 

cific application for Apache. (b) The cache block distribution 

over different number of sharers for Apache. For example, 

9,000 cache blocks have a private access pattern (only one 

processor is accessing the block). 

 
Figure 4b shows the degree of sharing for a snapshot 

of the application Apache with and without the use of the 

Tagless directory. Each bar in the histogram represents the 

number of cache lines with patterns with a certain number 

of processors sharing the cache line. Private cache lines are 

the dominant sharing pattern for Apache, exhibited by over 

75% of the cache lines. We observe that the percentage of 

cache lines tagged as private reduces to 40% for the Tagless 

the directory, not the actual pattern itself. 

We organize the directory table as a two-dimensional 

structure with NDir.ways ways and NDir.sets. Each bucket points 

to exactly one entry in the directory table and multiple buckets 

pointing to the same entry essentially map to the same sharing 

pattern. The size of the pattern directory table is fixed (derived 

from the application characteristics in Section III-F) and is 

entirely on-chip. Hence, when the table capacity is exceeded, 

we have a dynamic mechanism to collate patterns that are 

similar to each other into a single entry. 

In this section, we describe our directory implemented 

on a multicore with 16 processors, with 64KB private, 2- 

way L1 caches per core, and a Tagless directory with 2 

hash functions and 64 buckets per hash function. The con- 

ventional Tagless directory design incurs an overhead of 
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HashN ∗ Nbuckets ∗ Pcores bits = 2 * 64 * 16 bits per set of the 
Insert cache line Y, Evict cache line XN in set S in Core P 

L1 cache. Figure 5 illustrates the SPATL approach. We have a 

table with NDir.entries (= NDir.ways NDir.sets) entries, each entry 

corresponding to a sharing pattern, which is represented by 

a P-bit vector. The directory table itself is a NDir.entries P bit 

array; at a moderate number of cores, it does not constitute the 

dominant overhead. For each bucket in the Tagless directory, 

we replace the sharing vector with a log2(NDir.entries) bit 

pointer to indicate the sharing pattern. Every time the sharer 

information is needed, the bucket is first hashed into, and the 

associated pointer is used to index into and get the appropriate 

bitmap entry in the directory table, which represents the sharer 

bitmap for the cache tags that map to that bucket. The main 

area savings in SPACE comes due to the replacement of the 

P-bit vector per bucket with a [log2NDir.entries|-bit pointer. 
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The next two sections describe how SPATL inserts entries 

into the Tagless buckets and directory table, how patterns 

are dynamically collated when there aren’t any free entries, 

... ... 1. Refer pattern 
2. Set Core P's bit 

3. Change pointer 
to new pattern 

and how sharing patterns are recalculated on cache block 

evictions. 

 
C. Cache Block Insertion 

When a cache line is brought in and a sharing pattern 

changes (or appears for the first time), the block needs to 

modify the sharing pattern associated with its bucket in the 

Tagless directory. To achieve this, the set index of the cache 

line is used to index to the specific bloom filter, and the tag 

is used to map to the specific bucket. When a cache line is 

inserted into a specific core i, logically, it modifies Core i’s 

sharing bit in the bucket mapped to. This operation is carried 

out in SPATL as a sharing pattern change. The current sharing 

pattern pointed to by the pointer in the bucket is accessed, 

and Core i’s bit is set in the pattern to form the new pattern. 

The newly generated pattern needs to be inserted into the 

directory table. The pattern table is organized as a two-way 

table with Nrows and Ncols. Initially, the incoming sharing 

pattern hashes into a particular row and then compares itself 

against patterns that already exist in that row (Figure 5). Once 

a free entry is found in the directory table, the row index 

and column location are used by the bucket to access the 

specific entry. Intuitively, the hash function that calculates 

the row index in the pattern table has to be unbiased so as to 

not increase pollution in any given row. We also require that 

similar patterns map to the same row so as to enable useful 

collation of sharing patterns that do not differ by many bits 

when the protocol runs out of free directory entries. 

To satisfy these two seemingly contradictory goals, we use 

a simple hash function to calculate the row index into the 

pattern table. We use a coarse bit-vector representation of 

the original sharing pattern as an index. For example, in a 

pattern directory with 16 rows, we could use a coarse-grain 

four-bit representation as the encoding to indicate which of 

the possible four-core clusters is caching the data. It ensures 

that patterns that map to the same row will differ only in 

topologically adjacent bits, enabling intelligent collation of 

patterns, i.e., without excessive extra traffic due to false 

sharers, by limiting  this  traffic to neighbors or  a  specific 

Fig. 6: Steps involved in inserting a new cache line. 

 

set of sharers (when there are no free patterns available). 

Since private and globally-shared (all processors cache a 

copy) patterns appear to be common patterns across all the 

applications, SPATL dedicates explicit directory indices for 

these P + 1 patterns (where P is the number of processors) 

without the need for actual directory space. 

Eviction of cache blocks. When a cache block is evicted 

from a core i, the bloom filter must be modified accordingly. 

Merely accessing the bucket to which the block hashes and 

resetting the bit corresponding to core i in the sharing pattern 

specified by the bucket does not suffice, since other blocks in 

the same core’s cache set may map to the same bit. Instead, 

the Tagless directory will recalculate the ith bit (associated 

with core i) of the bloom filter buckets by rehashing all tags 

in the set to detect collisions. 

In SPATL we cannot simply recalculate and reset (if 

necessary) core i’s bit in the sharing pattern pointed to by 

the bucket since other buckets could be pointing to this same 

sharing pattern. Instead, we treat such recalculations of the 

bloom filter as essentially sharing pattern changes. When core 

i’s bit needs to be reset in a bucket, we first access the sharing 

pattern pointed to by the bucket. Following this, we reset core 

i’s bit and try to reinsert into the pattern table as a new sharing 

pattern. 

Illustration : Cache line insertion and eviction. Figure 6 

illustrates the steps involved in inserting a cache line into 

SPATL’s directory. Currently, set S holds cache lines X1,X2, 

...XN in its N ways and we would like to insert cache line 

Y and displace cache line XN. Not all buckets are affected 

as a result of this change, only the buckets that XN and Y 

hash  into.  Hence,  in   1.,  the  L1  cache  at  core  P  calculates 

the current Bloom summary, the new bloom summary with 

Y inserted in place of XN, and the difference between the two 

summaries. The difference will include at most two buckets. 

If Y is the first address in the set to hash into a bucket 

from the set S, then Core P’s bit in that bucket needs to 

be set (indicated by Set-Bucket in Figure 6). If no other 
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address hashes into the same bucket as XN then Core P’s bit 

needs to be reset on the bucket to prune out false positives 

(indicated by Reset-Bucket). The tuple consisting of (Core 

id (P), Set id (S), Set-Bucket, Reset-Bucket) is sent to the 

Tagless  directory.  In   3.,  the  Tagless  directory  refers  to  the 

 

Bucket's Pattern Pattern Table 

pattern pointed to by the Reset-Bucket, resets Core P’s bit, 

inserts the new  pattern into the  pattern table, and  swings 

Reset-Bucket’s  pointer  to  point  to  the  new  pattern.  In    4., 
the Tagless directory refers to the pattern pointed to by the 

Set-Bucket, Sets Core P’s bit, inserts the new pattern into 

the pattern table, and swings Set-Bucket’s pointer to point to 

the new pattern. We do not unset Core P’s bit directly in the 

pattern table because there could be potentially other buckets 

pointing to the same pattern. Similarly, we do not set Core 

P’s bit directly in the pattern table because this could induce 

an extra false sharer for buckets already pointing to the entry. 

 
D. Merging Patterns 

A key challenge of fixed size superset representation is 

the combining of patterns from different cache blocks. In 

the hybrid approach, which combines Tagless and the pattern 

directory, sharing patterns need to be merged at two different 

levels. At the first level, the Tagless directory essentially 

associates a single sharing pattern vector with each bucket. 

When cache blocks with different sharing patterns hash into 

the same bucket, then the Tagless directory will need to store 

a union of the sharing patterns of each cache block. This 

arises due to the false positives introduced by bloom filters. 

The other form of merging occurs when there are more 

sharing patterns in the system than the pattern directory 

can support. Figure 7 illustrates the process of inserting a 

pattern into the pattern table. When inserting a pattern in 

the directory, we index into the pattern table and search for 

a matching entry. If there are no matching or free entries 

that can be allocated from the set, the incoming pattern is 

combined with some existing pattern. Note that this merging 

does introduce extra false positives for the buckets that 

already point to that entry. The pattern directory tries to 

minimize pollution by merging the incoming pattern with the 

sharing pattern that is closest in terms of hamming distance 

(number of sharers in which they differ). This ensures that the 

extra sharers/false positives caused by the merging is kept to a 

minimum. Existing Tagless directory buckets that point to the 

sharing patterns will experience new false positives, but by 

ensuring that the merged patterns are similar to each other, 

we can limit the number of extra sharers and the resulting 

potential for extra coherence traffic. 

Removal of sharing patterns. The last challenge that 

needs to be addressed is to ensure that entries in the directory 

are re-usable once no bucket has the sharing pattern in the 

entry. We use a simple scheme of reference counting to detect 

when an entry is no longer in use. A counter is associated with 

each entry in the directory. This counter is incremented when 

a new bucket starts pointing to the entry and is decremented 

when a bucket pointing to the entry changes its pointer. The 

entry can be reclaimed when the counter reaches zero. 

Fig. 7: Inserting and merging a pattern into the pattern table. 

 
E. Directory Accesses 

An interesting challenge that SPATL introduces is that it 

is possible for the directory to provide an inaccurate list 

of sharers to the coherence protocols. Coherence protocols 

use the sharers list in multiple ways. On a write access, the 

sharing pattern is used to forward invalidations and obtain 

the latest version of a cache block if any of the processors is 

holding a modified version. In such cases, we adopt a parallel 

multicast approach in which the pattern directory pings all 

possible sharers indicated by the sharing pattern. Cores will 

respond based on their state; whether they have a modified 

copy, have simply read it, or do not even cache the block. 

Whether the shared cache is inclusive or exclusive deter- 

mines whether the information in the directory is needed to 

retrieve data on read misses. Consider an inclusive cache 

in our baseline system with private caches and shared L2. 

With an inclusive L2 cache, the shared L2 has a copy of 

each L1 cache block. In case of a read miss on a clean 

cache block, the L2 can directly source the data and save 

the effort of forwarding messages to one of the L1 sharers. 

We only need to add information in the coherence directory 

about the new sharer. The directory information is needed 

for invalidation on write misses and to locate the modified 

copy when transitioning from modified to shared state. With 

a non-inclusive (or exclusive) shared L2, on a read miss that 

doesn’t find the block at the L2 level, we cannot separate 

the condition when the block does not reside at all on-chip 

from when the block is cached by one of the L1s without 

examining the directory. We have no choice but to check the 

directory and ping each of the sharers to see if they have 

a copy. Extra sharers/false positives in the directory affect 

read miss performance and the directory design has to be 

comparatively more robust than inclusive caches. 

 
F. Challenge: Two-Level Conflicts 

The base SPATL design without optimization exhibits 

much higher false positives when compared to the Tagless 

design. The reason for the increase in false positives is the 

double conflicts in the Tagless buckets and the pattern table. 

As we can see from Figure 4b the Tagless table in general 

introduces new sharing patterns because of conflicts at the 

Tagless buckets. The pattern table introduces further false 

positives after merging patterns. The conflict itself is not a 

problem if the original patterns can be recovered when a cache 

line is evicted as in the Tagless design. Unfortunately, with 

the base hybrid design this recovery ability is lost since the 
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exists in the base design and we demonstrate that employing 

such optimizations minimizes the bandwidth cost of pattern 
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IV. ANALYTICAL   MODEL: BIT   BUDGET   TRADE-OFFS 

We analyze and compare the different coherence directory 

schemes in order to understand their reasons for efficiency 

using an analytical model. In the following analysis, we 
False Positive! 

Fig. 8: Two levels of false positives. Dashed lines indicate operations. 

 
pattern table introduces new sharing patterns by ORing with 

other unknown patterns. 

To illustrate the problem, consider the example with 4 

processors shown in Figure 8. Cache line A has the (private) 

pattern 0001, while cache line B has the (private) pattern 

1000. A and B map to same the bucket in the Tagless 

directory. This causes the first level of false positives, and the 

bucket creates the pattern 1001, and inserts it into the pattern 

table (  1.). In the pattern table, the pattern gets merged with 

pattern 1101. Pattern 1101 is now stored in the pattern table, 

and the bucket stores the pointer pointing to the pattern 1101 

(  2.). 

Now consider when cache line B is evicted. In the SPATL 

design, on a cache line eviction, we read the pattern table 

entry (1101) and reset Core 0’s bit, which leaves us with 1100. 

The false positive from Core 2 caused by merging patterns 

in the pattern table cannot be cleared since we do not know 

whether Core 2’s bit was set due to pollution in the Tagless 

or the Pattern table. With private patterns being the common 

patterns, the situation described occurs frequently, leading to 

pattern table pollution, and soon enough the pattern table does 

not have free entries, leading to more pollution. In the Tagless 

design, the signature is recalculated, and the pattern would 

naturally become 1000, which is the accurate pattern again. 

To clean up the polluted entries, we use pattern recalcu- 

assume that the total number of cores in the system is P, 

i.e., P private caches need to be kept coherent and each 

cache has S sets and W ways. The total number of blocks 

that can be cached across all the L1 caches is P S W . 

However, typically there are fewer unique blocks due to 

data sharing. Assuming f is the fraction of blocks that are 

unique in the total number of blocks (0 f 1), then a 

coherence directory essentially needs only f S W   P entries 

to support coherence operations. Hence, the total bit budget 

for an idealized directory will be : f P S   W   (Tb + P), 
where Tb is number of tag bits (typically 48 bits on a 64 

bit machine). For large multicores if P >> Tb, then the Ideal 

Directory = f ∗ P ∗ S ∗ W ∗ P and ∝ O(P
2). 

The shadow tags approach that completely replicates the 

L1 tags has a bit budget as P   S   W    Tb, which is suited to 

the case when most cache lines across the cores are private. 

Shadow tags has a smaller overhead than the ideal directory 

when all tags are unique ( f = 1), because the shadow tags do 

not store the actual sharing patterns required by coherence. 

Every coherence access needs a W P-way search on Tb- 

bit tag fields. Even on small multicores, this is an energy- 

intensive associative search. Tagless Directory is built on the 

shadow tags approach. It adopts shadow tags’ approach of 

using the directory to represent the tags in the L1, but unlike 

shadow tags, it only represents a summary of the tags in each 

set using a bloom filter. Its overall budget is : 

Tagless Budget = S ∗ B ∗ Hn ∗ P 
B and Hn are related based on false positives 

lation messages at the time of cache evictions. At the time 

of cache evictions, we look up the pattern table and multicast E[False positives] = (P — 1) ∗ (1 − (1 
1 

)W )Hn 
B 

a pattern recalculation message to other sharing processors 

(in this case, when Core 0 evicts B, the Tagless directory 

multicasts messages to Core 2 and Core 3 as indicated by the 

pattern.) Each individual processor recalculates its signature 

of the set and sends back the information. Now, we are able 

to reconstruct the precise pattern for the set and place it in 

the pattern table. For example, in this case we will be able 

to precisely recalculate the pattern for the set as 1000. The 

recalculation results in increased messages in the system as 

shown in Figure 11. However, the messages are not in the 

critical path because they are incurred only on cache evictions. 

We investigated a few simple optimizations to address the 

increase in traffic in Figure 11. Instead of recalculating 

the pattern on every eviction, we use simple decision logic 

to decide when to recalculate based on the importance of 

the cache line. We evaluate the importance of whether a 

pattern recalculation is needed based on information such 

as the number of sharers in the pattern, and the number 

of entries pointing to the pattern. This information already 

B: Buckets/Hash function ; Hn : # of Hash functions 

With a large number of cores, P will dominate the relation, 

resulting in significant area overhead. SPATL improves over 

Tagless by decoupling Tagless’ relation to P and relates 

it to the actual sharing patterns in the application. SPATL 

allows the designer to carefully consider the application suite 

targeted and appropriately size the pattern table. If the pattern 

table stores 2
Ip patterns, then the Tagless table needs Ip bits 

per entry, which is smaller than P. Therefore, in SPATL the 

pattern table grows linearly with P, but the Tagless table itself 

grows as log(pattern table size). Overall, SPATL performs 

better than Tagless under the following conditions 

[S ∗ B ∗ Hn ∗ Ip(Tagless  Table) + 2Ip ∗ P(Pattern  Table)] 

< S ∗ B ∗ Hn ∗ P 

In many cases for large multicores P >> Ip, which implies 

that (P − Ip) can be approximated as P, so the condition can 

be reduced to 2
Ip < S ∗ B ∗ Hn. 
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V. EVALUATION 

A. Experimental Setup 

To evaluate the SPATL design, we use a Simics-based [12] 

full system execution-driven simulator, which models the 

SPARC architecture. For cache and memory simulation, we 

use Ruby from the GEMS toolset [13]. Our baseline is a 16- 

tile multicore with private L1 caches and a 16-way shared 

inclusive L2 distributed across the tiles. We employ a 4x4 

mesh network with virtual cut-through routing. We simulate 

two forms of packets: 8-byte control packets for coherence 

messages and 72-byte data payload packets for the data 

messages. Table I shows the parameters of our simulation 

framework. 

We use a wide range of workloads, which include com- 

mercial server workloads [3] (Apache and SPECjbb2005), 

scientific applications (SPLASH2 [18]), and multimedia ap- 

plications (PARSEC [4]). We also include two microbench- 

marks, migratory and producer-consumer, with known sharing 

patterns. Table II lists all the benchmarks and the inputs used 

in this study. The table also includes the maximum number of 

access patterns for each application, which can be correlated 

with the performance of a given SPATL directory size. 

We compare against the following coherence directory 

designs: 

Tagless Directory (TAGLESS). This design studies the 

original Tagless approach presented at Micro 2009. The 

number of hash functions is fixed at two, and the number 

of buckets per set is varied from 16 to 64. 

SPATL-N (TAGLESS-SPACE Approach). We also study 

a range of SPATL design points varying the directory ta- 

ble from 512 — 2048 entries. We evaluate two versions, 

namely, SPATL-NOUPDATE (SPATL1024noupdate in chart) 

and SPATL. The SPATL-NOUPDATE is a baseline design for 

the combined approach. SPATL includes extra optimizations 

(discussed in Section III-F) geared to eliminating the transient 

false-positives that arise due to conflicts in the TAGLESS 

table. For the SPATL design, each tile contains a segment 

of the directory table. We charge a 2-cycle penalty for each 

SPATL lookup. 

 
B. How accurate is SPATL? 

SPATL can achieve false positives similar to the base 

Tagless design. We do require extra logic in the design to 

eliminate the pollution arising out of two levels of compres- 

sion. We eliminate the pollution by designing simple “pattern 

recalculation” messages to recalculate the sharing pattern. 

These messages are multicast to possible sharers off the 

critical path, at eviction time. 

In our first set of experiments, we estimate the accuracy 

of sharing patterns maintained in SPATL. In a directory-based 

coherence protocol, coherence operations refer to the sharer 

information to forward coherence messages and the accuracy 

of tracking sharers has an impact on overall network utiliza- 

tion and hence energy spent in communication. For cases 

in which the sharing pattern is represented inaccurately, we 

evaluate the average number of extra false sharers experienced 

on each directory probe. 

Our baseline shown in Figure 9a evaluates the Tagless 

directory approach with different hash functions and buckets. 

64 buckets and 2 hash functions appears to be the optimal 

design with negligible false positives. Figure 9b shows the 

SPATL approach. As we can see the SPATL-noupdate (naively 

combining TAGLESS with a Pattern table) introduces many 

false positives. Once we introduce the optimization to recal- 

culate the sharing pattern on evictions, we reduce the false 

positives and are able to approach Tagless’ level of accuracy. 

In applications including MP3D, FFT, and Water, the SPATL 

design does not add any inaccuracy on top of the Tagless 

design. This is due to the over provisioning of entries in the 

pattern table, which needs to support other applications as 

well. In the baseline SPATL-noupdate design, Apache, Barnes, 

Bodytrack and SPECjbb experience the lowest accuracy with 

the relatively large number of sharing patterns that merge in 

complex ways to introduce many false sharers. 

There are two possible scenarios where the directory needs 

to be referenced. A cache miss in the L1 to look up the 

directory to decide which cache could possibly provide the 

data. If SPATL were integrated with an inclusive shared L2 

cache then we can decide to source data for all misses 

from the L2, except in the case when one of the caches 

holds a modified copy. If SPATL was integrated with a non- 

inclusive shared cache then cache misses need to possibly 

source the data from one of the L1s and need the directory for 

determining the possible sharers. Write misses (get exclusive 

access and update messages) probe the directory for sharer 

information to forward invalidations. 

Figure 10 demonstrates an interesting trend that the av- 

erage false positive sharers is much smaller for invalidation 

probes. Most of the SPATL false sharers are introduced as 

a result of probes on read misses. If SPATL were integrated 

with a non-inclusive cache it would need to satisfy both read 

misses and forwarded invalidations; we would need 1024 

entries in the pattern table. If SPATL were integrated with 

an inclusive shared L2 cache, we can eliminate all the false 

positives due to the cache misses and reduce the pattern table 

size by 4×. 

C. Interconnect Traffic 

In this section, we study the interconnect traffic for applica- 

tions in SPATL and show that the SPATL directory introduces 

minimal increase in on-chip traffic. 

SPATL increases traffic compared to fully accurate direc- 

tory in two ways. The false positives per reference gener- 

ates additional messages, which are on the critical path of 

invalidations and lookups. In addition, ―pattern recalculation‖ 

(presented in Section III-F) at evictions also multicast mes- 

sages to sharers. Figure 11 plots the increase in traffic due 

to the false positives and the recalculation. In applications 

with few sharing patterns, both the traffic caused by false 

positives and recalculations are minimal. This is the case 

for Blackscholes, Canneal, and all the scientific benchmarks 

except Barnes. The additional traffic is less than 2%. Due 
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TABLE I: Target System parameters 
 

Cores: 16-way, 3.0 GHz, In order 
L1D/I : each 64KB, 2way, 64byte block 

Shared Tiled L2 Cache 

16 banks, 4MB/Tile, 16way, 14 cycles 

Interconnect: 4x4 mesh 
128bit wide 2cycle links 

Main Memory : 500 cycles 

 

 

 

 

 

 

 

 

 

 
2 

TABLE II: Application Characteristics 
 

Benchmark Setup 
# of 

sharing patterns 

Network 

Utilization 

Apache 80000 requests fastforward, 2000 warmup, and 3000 for data 

collection 

1657 11.6% 

JBB2005 350K Tx fastforward, 3000 warmup, and 3000 for data collec- 

tion 

1054 8.5% 

Barnes 8K particles; run-to-completion 707 3.3% 

Cholesky lshp.0; run-to-completion 364 2.6% 

FFT 64K points; run-to-completion 104 3.7% 

LU 512x512 matrix,16x16 block; run-to-completion 249 1.9% 

MP3D 40K molecules; 15 parallel steps; warmup 3 steps 181 6.1% 

Ocean 258x258 ocean 208 5.7% 

Radix 550K 20-bit integers, radix 1024 169 5.0% 

Water 512 molecules; run-to-completion 75 2.7% 

Migratory 512 exclusive access cache lines 63 0.6% 

ProdCon 2K shared cache lines and 8K private cache lines 82 1.5% 

Blackscholes 4096 options 450 3.5% 

Bodytrack 4 cams, 100 particles, 5 layers, 1 frame 2087 2.2% 

Canneal 100K elements, 10K swaps per step, 32 steps 313 4.3% 

X264 640 x 360 pixels, 8 frames 590 2.2% 
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(a) Tagless false positives 
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(b) SPATL false positives 

Fig. 9: (a) Average number of false positives per reference with Tagless approach. (b) Average number of false positives per 

reference with SPATL approach. 
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10: False sharers on coherence write 

types of traffic is minimal. In applications with many sharing 

patterns (i.e., Apache, JBB, Bodytrack), traffic overhead due 

to false positives is limited to 5%. On the other hand, traffic 

due to multicast is increased by up to 15%. This traffic is 

off the critical directory lookup path, so its impact on the 

performance could be minimal compared to the traffic due to 

false positives. Note that our overall network utilization for 

most applications is moderate, which allows the network to 

support the increase in traffic. 

invalidations. 
 

to recalculation, multicast only happens when there is a hint 

of pollution (i.e., pattern table indicates that more than one 

sharing pattern has been ORed at the entry). Therefore both 

The key to reducing this traffic is the frequency of the 

pattern recalculation. Recalculating on every eviction might 

be unnecessary because multiple hashing functions could filter 

out some of the false positives, meaning the recalculation 

traffic is unnecessary in such cases. Recalculating lazily and 

TAGLESS 16X2 

TAGLESS 32X2 

TAGLESS 64X2 
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Fig. 11: Extra interconnect traffic. The four columns from left to right indicate traffic using the 

Every, Random, Count, and Sharer policies. 
 

infrequently on the other hand leads to a heavily polluted pat- 

tern table, and introduces further conflicts. We explore three 

simple techniques to reduce the recalculation traffic here. 

Random chooses to send the recalculation message every 

third eviction. Count will only send the recalculation message 

if the entries pointing to the pattern reach a certain threshold 

(48 in the experiment). Sharer will send the message when 

the pattern indicates more than 4 sharers. Figure 11 evaluates 

the effects of the three methods on both traffic caused by 

recalculation and false positives. In general, less frequent 

recalculation leads to more false positives, therefore causes 

slight increase in traffic due to false positives. The simple 

random method is very effective, reducing the recalculation 

traffic to less than 7% for all the applications, while adding 

less than 1% traffic from false positives. Count method does 

not perform better than random because the number of entries 

pointing to a pattern does not translate to the frequency with 

which the pattern is referenced. The sharer method has the 

highest accuracy. However, the traffic reduction is limited. 

 

D. Area, Energy, Delay 

This section reports the area, energy, and access time of 

the SPATL directory. CACTI 6.0 [14] is used to estimate 

the delay and energy for a 32nm process technology. The 

estimated numbers at 16 cores are shown in Table III. The 

additional cost of accessing the small pattern directory table 

adds little to the access time and energy. The accessing can be 

finished within two CPU cycles, and both the accessing time 

and power consumption is significantly better than alternative 

directory designs including a FULL directory cache and the 

shadow tags directory. 

The last column in Table III shows the relative area of 

the SPATL directory. The area for SPATL includes both the 

buckets of pointers and the pattern table. On top of the 

Tagless directory, SPATL further compresses the directory by 

25% to 42% at 16 cores. This translates to 28% to 37% of 

the area of a FULL directory cache. The leakage power is 

proportional to the size of the memory structures. We estimate 

a 74% reduction in leakage power for SPATL with 512 entries 

compared to a FULL directory cache. 

E. Scalability 

The performance of the SPATL directory directly depends 

on the number of sharing patterns present in the cache. This 

TABLE III: CACTI estimates for various directory settings. (The 

access time and read energy for SPATL include access of the pointer in 
SPACE buckets and the pattern table entry.) 

Configuration Access 
Time(ns) 

Read 
Energy(fJ) 

Storage Relative 
to Tagless 

FULL dir cache 0.55 16812 2.03× 
1.53× 

1× 
0.58× 
0.66× 
0.75× 

Shadow tags 0.92 67548 
Tagless-lookup 0.27 4104 
SPATL-512 0.40 4299 
SPATL-1024 0.41 4394 

SPATL-2048 0.43 4486 

 

is mainly influenced by the application’s characteristics, the 

parallelization strategy, and programming patterns. However, 

in most architectures the cache block size and cache size 

have a key influence on the sharing patterns observed since 

they affect properties like false sharing and working set 

size in the cache. Figure 12 shows the influence on false 

positives by varying the L1 cache parameters. As the size of 

the L1 caches increase, the average false positives increases 

with more sharing patterns. However, the increase is minor 

after the size of the working set is reached. The influence 

of larger cache lines is mixed, because false sharing could 

lead to either increasing or decreasing sharing patterns. The 

false positive increases when line size increases from 32B 

to 64B, then decreases when line size further increases to 

128B. Characterizing the influence of false sharing on sharing 

patterns is beyond the scope of this work. 
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Fig. 12: Average false positives under varying L1 cache 

settings. The group on the left keeps the cache line size 

constant (64B) and varies the number of sets. The group on 

the right keeps the number of sets constant and varies the 

cache line size. 
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To study the scalability of the SPATL directory, we simu- 

late three multicore systems (8-core CMP, 16-core CMP, and 

32-core CMP). For each system, we experimented with three 

SPATL directory setups by varying the size of the pattern 

table. Figure 13 shows that SPATL with a limited number 

of pattern entries consistently performs similar to FULL. 

The network traffic is within 5% of FULL for SPATL-128 

using 8 cores, SPATL-1024 using 16 cores, and SPATL-4096 

using 32 cores. Interestingly, to achieve an effective directory, 

SPATL appears to need a pointer size of K logP (K = 2.4 

in our experiments). On top of the tag compression by 

TAGLESS, the directory of size M ∗ P is further compressed 

to M ∗ K ∗ logP. 
Figure 14 projects the size of the directory to systems up to 
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512 cores. Compared to the tagless directory, SPATL further 

compresses the directory by 34% at 16 cores, and by 78% 

at 64 cores. We also show the size of the ideal directory for 

8, 16, and 32 cores. The ideal directory is a directory cache 

that magically holds only the tags present in the L1 caches. It 

represents the minimum space for an accurate directory cache. 

The size varies across applications and in execution, and we 

show the captured maximum size.SPATL has less overheads 

compared to the ideal directory cache. 

Accelerator-based Manycore Architectures. An impor- 

tant design decision in SPATL is the size of the pattern table 

(fixed at design-time), which determines how many unique 

sharing patterns can be simultaneously supported. In our 

experience, we observed large variations between the different 

workload suites and in some cases outliers even within a 

workload suite (e.g., Barnes in SPLASH2). In our current set 

of experiments, we assume general-purpose multicores that 

can target any of these workloads. Hence, the pattern table 

is sized to support commercial applications like Apache and 

SpecJBB, which have myriad read-sharing patterns. Unfor- 

tunately, this severely over-provisions the pattern table for 

workloads such as SPLASH2. We now consider accelerator- 

like manycore architectures which target only data parallel 

algorithms like SPLASH2. We found that a 32 entry pattern 

table is sufficient for many SPLASH2 applications (other 

than Barnes) to perform optimally at 16 cores. Assuming 

linear growth in patterns with increase in cores (a reasonable 

assumption for data parallel workloads), we only require a 

2048 entry pattern table for 1024 cores. We believe providing 

a cache coherence directory for a hypothetical 1024-core 

accelerator (64KB L1 per core) would only require 0.6MB, 

less than 1% of the total L1 capacity. 

 
VI. RELATED WORK 

This section discusses different directory designs for CMP. 

Shadow tags duplicate all the tags present in the private cache 

and construct the sharing vector by looking up the tags when 

accessed. The design is simple in concept and works well in 

current multicores including SUN’s Niagara2 [17]. The bigger 

challenge is that it requires an energy-intensive associative 

search to construct the sharing pattern. We have shown that 

using the techniques described in this paper we can improve 
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Fig. 13: Interconnect traffic for SPATL normalized to a full 

map in-cache directory. The stacked bars show the extra 

traffic caused by false positives and extra traffic caused 

by pattern recalculation. X axis represents three multicore 

systems (8-core, 16-core, and 32-core). We experiment with 

three different SPATL pattern table sizes (2nd X axis: # of 

bits of the pattern pointer. Pattern table size (2
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space consumption by a factor of 3 at 64 cores without the 

need for associative lookup. 

Tagless directory [19] uses bloom filters to map the tags 

in each cache set. The bloom filters concisely summarize the 

tags for each set in every core and completely eliminates 

the associative search on lookups. Overall, it reduces storage 

compared to shadow tags by a factor of the number of ways in 

the L1 cache. The benefits of the bloom filters are limited for 

multicores with a large number of cores since the per-bucket 

sharing vector becomes a significant area overhead. 

Directory cache [1], [15] limits the size of the directory by 

restricting the number of blocks that the directory holds the 

sharing information for. With this limitation, if one block is 

not present in the directory cache, either all the shared copies 
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have to be invalidated, or the cache block must be defaulted 

to shared by all the processors. Cuckoo directory [7] uses an 

improved hashing algorithm to eliminate associativity-related 

tag evictions in the directory cache. Other proposals try to 

combine a small directory cache with a larger in-memory 

directory [10], [15]. Such designs essentially emulate a big 

directory cache, but they require complex protocol extensions 

that touch off-chip metadata, and some directory accesses will 

suffer long latencies. 

Full map directory [5] is a simple solution for CMPs with 

an inclusive shared last-level cache. The bit vector indicating 

the sharers is associated with the cache line at the shared 

cache. Full map directory imposes significant storage penalty 

because the shared cache is usually much larger (24MB on 

the latest Itanium [9]) and includes lines that are not cached 

at lower levels. SPACE [20] sought to optimize full map by 

making the observation that many entries in the shared cache 

store redundant patterns. It decouples the sharing pattern from 

the directory entries, and only represent patterns present in the 

application. Each cache block in the inclusive cache includes 

a pointer to the pattern table. Unfortunately, even uncached 

blocks include the pointer and this leads to significant space 

overhead compared shadow tag-based approaches. 

Coarse vectors [8], [16], sharer pointers [2], [11], and 

segmented vectors [6] all try to compress the sharing vector 

using more compact encodings. Based on the encoding type, 

these compressed directories can represent only a limited 

number of sharing patterns, and introduce imprecision (hard- 

coded at design time) or extra latency for other patterns. 

Overall, SPATL is agnostic to the type of shared cache 

(inclusive or exclusive), affords significant compression over 

the previously known best approach, Tagless, and loses pre- 

cision more gracefully based on an application’s coherence 

requirements. 

 
VII.   CONCLUSIONS 

We presented SPATL, a coherence directory that requires 

minimal storage (83KB at 16 cores) and can scale at least 

up to 512 cores (3MB storage required). SPATL achieves this 

by combining two complementary techniques that compress 

both the tags and the sharing patterns in the directory. SPATL 

adopts Tagless directory’s approach [19] of compressing the 

tags using bloom filters to summarize the information in each 

set. SPATL further compresses the sharer bit vectors in the 

bloom filters based on the observation that due to the regular 

nature of programs, many cache blocks exhibit the same 

sharing pattern, i.e., there are only a few sharing patterns and 

they are replicated in many bloom filters. SPATL maintains a 

separate table to hold only the unique patterns that appear in 

the application. Multiple bloom filters with the same pattern 

point to a common entry. SPATL provides significant benefit 

over the Tagless’s tag compression and achieves 34% savings 

in storage at 16 cores, and 78% at 64 cores. SPATL’s storage 

overhead is the minimum amongst all previous coherence 

directory proposals and scales better than even an idealized 

directory cache from 16—512 cores. Finally, the directory 

storage can be tuned based on the sharing patterns in the 

application. Many parallel workloads in SPLASH2 have few 

sharing patterns and we find that for a 1024-core (64KB 

L1) accelerator architecture that targets only these workloads, 

SPATL would need only 600KB of space (less than 1% of total 

aggregate L1 space). 
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