
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

32

Honey, I Started to shrink the Coherence Directory (SPATL)

Ms.Pragyan Paramita Panda

1
*, Ms.Suchitra Mishra

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

pragyanparamita@thenalanda.com*, suchitramishra@thenalanda.com

Abstract— The coherence directory, which contains details on
the sharing of cache blocks, is one of the main problems with on-
chip coherence in a multicore processor in terms of scaling. To
reduce area overhead, shadow tags that copy complete private
cache tag arrays are frequently utilised. However, getting the
sharing information requires an energy-intensive asso- ciative
search. A Tagless directory was recently proposed, which uses
bloom filters to condense the tags in a cache set. To totally avoid
associative lookup and minimise directory cost, the Tagless
directory associates the sharing vector with the bloom filter
buckets. However. With more cores, Tagless still has space and
energy constraints because it still represents the sharing
information using a full map sharing vector.

First, we demonstrate in this work how numerous bloom filters

basically reproduce the same sharing pattern because of the

regular nature of applications. We then take advantage of the

shared pattern and suggest SPATL1 (Sharing-pattern based

Tagless Directory). By taking use of the sharing pattern similarity,

SPATL is able to divorce sharing patterns from bloom filters and

get rid of duplicate sharing patterns. In comparison to Tagless, the

previous most storage-efficient directory, SPATL offers 34%

storage savings at 16 cores and works with both inclusive and non-

inclusive shared caches. We investigate a number of methods for

periodically eliminating false sharing that results from combining

Tagless and sharing pattern compression, and we show that

SPATL can achieve the same amount of false sharers as Tagless

with 5% more bandwidth. Last but not least, we showKeywords:

Directory coherence, Cache coherence, Multicore scalability,

Tagless, Bloom Filters

I. INTRODUCTION

In order to utilize the growing on-chip real estate, designers

are increasingly turning toward larger numbers of independent

compute engines or cores, whether homogeneous or heteroge-

neous. To provide fast data access, data is replicated/cached

in core-local storage to exploit locality. Further, to ease

communication among these compute cores, the potentially

multiple copies of data are often kept coherent in hardware.

The larger core counts require more bandwidth both for data

access and to keep the caches coherent. Cache coherence

needs to track information about the various copies of cached

blocks in order to keep them consistent with each other.

A directory is typically used to provide precise information

on the presence of replicas so as to minimize coherence

communication.

A typical directory-based coherence protocol [5] maintains

a bit vector (the sharing pattern) per coherence unit, represent-

ing the processors that currently share the memory locations,

resulting in space overhead that is proportional to the number

of cores and the size of the shared level of memory. By

limiting the communication to a multicast among the actual

sharers instead of a broadcast, the bandwidth requirement

of directory-based protocol scales better than typical snoop-

based protocols.

Several optimizations to reduce the area overhead of

the directory have been proposed. For example, a directory

cache [1], [15] stores sharing information for a subset of lines

in the shared memory. A compressed sharer vector [6], [8],

[16] uses fewer bits to represent sharer information, thereby

losing some precision in determining the exact sharers. Such

techniques also can represent only a limited number of shar-

ing patterns and suffer inelegant sharp performance losses for

specific types of sharing patterns. Pointers [2], [11] provide

precise sharing information for a limited number of sharers

of each cache line, resorting to introducing extra hardware

and software overhead when the number of sharers exceeds

the number of hardware-provided pointers.

Alternatively, shadow tags are used, for example, in Ni-

agara2 [17], in which the tags from the lower level caches

are replicated at the shared level. An associative search of

the shadow tags is used to generate the sharer vector on

the fly. Although shadow tags achieve good compression by

maintaining only information for lines present in the lower

level caches, the associative search used to generate the sharer

vector is energy hungry, especially at larger core counts.

Recently, two different approaches have been used to

achieve directory compression without loss in precision or

extra energy consumption. The Tagless directory [19] starts

with the shadow tag design and uses bloom filters per private-

level cache set to encode the presence of the tags in each

private-level cache. The buckets in the bloom filter repre-

sent the sharing pattern. This approach has two advantages,

namely, it eliminates the energy-hungry on-the-fly sharing

pattern generation, and the shadow tag space is also no longer

proportional to the size of the tag.

SPACE [20] was designed for inclusive caches and lever-

ages the observation that many memory locations in an

application are accessed by the same subset of processors and

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

33

TILE TILE TILE TILE
0 1 2 3

TILE TILE TILE TILE

4 5 6 7

TILE TILE TILE TILE
8 9 10 11

TILE TILE TILE TILE
12 13 14 15

'

∗

∗

hence have identical sharing patterns. In addition, the number

of such patterns is small, but varies across applications and

even across time. SPACE proposes the use of a sharing pattern

table together with pointers from individual cache lines to the

table. Graceful degradation in precision is achieved when the

table’s capacity is exceeded.

In this paper, we extend the observation made in [20]

that sharing pattern commonality across memory locations

can be used to compress the directory without significant

loss in precision, to apply to non-inclusive caches. Specif-

ically, we combine the energy and compression benefits of

the Tagless and SPACE approaches in a system we call

SPATL (Sharing-pattern based Tagless Directory). As in the

Tagless approach, tags within individual sets are combined

in a bloom filter. However, rather than containing sharer

vectors, the individual buckets in the bloom filter contain

pointers to a table of sharing patterns. As in SPACE, only

the sharing patterns actually present due to current access

to shared data are represented in the sharing pattern table.

This combination allows directory compression with graceful

degradation in precision for both inclusive and non-inclusive

cache organizations. Our results show that the use of a sharing

pattern table can be used to compress the Tagless directory,

resulting in compounded area reductions without significant

loss in precision. SPATL is 66% and 36% the area of the

Tagless directory at 16 and 32 cores, respectively. We study

multiple strategies to periodically eliminate the false sharing

that comes from combining sharing pattern compression with

Tagless, and demonstrate that SPATL can achieve the same

level of false sharers as Tagless with 5% extra bandwidth.

Finally, we demonstrate that SPATL scales even better than

an idealized directory and can support 1024-core chips with

less than 1% of the private cache space for data parallel

applications.

II. BACKGROUND

In a multicore chip like the one shown in Figure 1, there

are private caches associated with each core (or set of cores).

In our baseline design, we also have a shared L2 cache

that is tiled across the various cores. While conceptually a

centralized structure, the directory is distributed across the

various tiles. Each cache block is assigned a home tile and the

directory associated with the home tile is assigned the task

of providing sharer information for cache blocks that map

to that tile. For maximum precision, the coherence directory

must maintain sharing information for each unique tag in the

private caches.

Designs that use an inclusive shared L2 cache piggyback

on the L2 tags to implement the tags required by the directory.

This requires the addition of a P bit sharing vector (P : #

of cores) per L2 tag. Unfortunately, since shared caches are

many times larger than private caches, many entries contain

no information. For example, if the Niagara2 (8 cores, 8KB

L1/core, 4MB shared L2) were to implement an in-cache

directory it would consume 64KB of space, which is 100%

of the cumulative size of L1 caches across all the 8 cores.

An alternative to piggybacking on the L2 tags is to use a

CPU

L1$

Shared L2

Tile

C
o
h
e

re
n
c
e

D
ir
e
c
to

ry

Router

Fig. 1: Tiled 16 processor multicore. Coherence directory

distributed to each tile.

directory cache to maintain information only for lines present

in the L1. Since each cache line in each core could be unique,

to guarantee no loss of information, the directory cache would

need to contain as many entries as the sum of the number

of cache lines in each L1, along with an associativity that

is at least the aggregate associativity of all the L1s (i.e.,

even on the 8 core Niagara2, we would need a 32 way

directory cache). Practical directory cache designs have much

lower associativity and pay the penalty of associativity-related

eviction of directory information for some blocks. While

recently there have been proposals [7] to use sophisticated

hash functions to eliminate associativity conflicts, optimizing

the directory cache organization is a hard problem.

Many current multicore chips (e.g., Niagara2) use a sim-

plified form of directory cache consisting of replicas of the

tag arrays of the L1 cache (i.e., maintain shadow tags). An

associative search of the shadow tags is used to generate the

sharer vector on the fly. Although shadow tags achieve good

compression by maintaining only information for lines present

in the lower level caches, the associative search used to

generate the sharer vector imposes significant energy penalty.

Recently, the Tagless coherence directory [19] was pro-

posed to eliminate the associative lookup. Instead of repre-

senting each tag exactly, a bloom filter concisely summarizes

the contents of each set in every L1 cache. Overall, we would

need only NL1sets P bloom filters (32–64bits per bloom filter)

to represent the information in all the L1 caches. The probing

required per L1 in shadow tags is replaced with a simple read

of a bloom filter, which eliminates all the complex associative

search of shadow tags. Unfortunately, for large multicores

the cost of the bloom filters grows proportionately (similar

to the sharing pattern vector) and constitutes significant

overhead. For example, for an 8 core Niagara2, it would

require 3KB (per hash function), but extrapolating to 1024

cores, it would require 3MB, which imposes significant area

and energy penalty for sharing pattern information access. We

briefly describe the overall architecture of Tagless below and

highlight the challenges.

A. Tagless Coherence Directory

Tagless coherence directory uses a set of bloom filters to

summarize the contents of the cache. Figure 2 shows the

bloom filter associated with each set of the private L1 cache.

Essentially, the Tagless directory consists of a NL1sets P

set of bloom filters (NL1sets : number of sets in the L1

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

34

Hash1's

Bloom Filters

HashN's

Bloom Filters

...

...

.....

......... ...

Core P's

Bloom Filter

.........

AND

P-bit sharing vector

Set

Index

Cache Tag

Hash1

T
a
g

p
es

s
A

cc
es

s
E

n
e
rg

y
 (

p
J)

of .

∗

'

10
12

8 10

6 8

4
6

4
2 2

0 0

Fig. 2: Tagless Coherence Directory [19].

cache. P : Number of cores). Each bloom filter per set is a

partitioned design that consists of hashN hash functions each

of which map to a k bucket (k bitmap) filter. If the size of

the bloom filter is comparable to a cache tag, overall this

essentially improves the space over shadow tags by a factor
 NL1ways

#o f hash f unctions

Tagless directory uses this representation to simplify the

insertion and removal of cache tags from the bloom filter.

Each bloom filter summarizes the cache tags in a single cache

set. Inserting a cache block’s address requires hashing the

address and setting the corresponding bucket (note that each

address maps to only one of the buckets). Testing for set mem-

bership consists of reading the bucket corresponding to the

cache tag in the set-specific bloom filter of each processor and

collating them to construct the sharing pattern (in Figure 2,

each bucket represents a sharing pattern). Having a bloom

filter per set also enables Tagless directory to recalculate

the filter directly on cache evictions. While conceptually,

the Tagless directory consists of NL1sets P bloom filters,

these filters can be combined since each core uses the same

bloom filter organization. A given cache block address maps

to a unique set and a unique bucket in the bloom filter.

Combining the buckets from all the bloom filters, a P bit

sharing pattern is created, which is similar to the sharing

pattern in a conventional full-map directory.

Multiple addresses could potentially hash to the same

bucket and hence introduce false positives. Using multiple

hash functions enables addresses to map to different buckets

and possibly eliminate false positives. Simply ANDing the

sharing vector from the buckets that an address maps to

in each hash function will eliminate many false positives.

Consider an implementation with hashN hash functions, k

buckets per hash function, Nsets L1 cache sets, and P cores.

The Tagless directory requires a P-bit pattern for each of the

k buckets, giving rise to an overhead of hashN * k * P * Nsets

bits.

Scalability Challenges. For large multicore chips (256+

cores) the storage overhead of the Tagless directory is dom-

inated by P. This introduces challenges to scalability with

Fig. 3: Left (a): Storage overhead of Tagless directory per

core; X axis: # of cores (Bloom Filter size); Y axis: KB of

coherence directory per core. Right (b): Access energy of

Tagless directory tile per core; X axis: (# of cores); Y axis:

pJ.

increasing core counts. Furthermore, reading a large P-bit

wide vector from this coherence directory will not be energy

efficient. Figure 3a shows the per-core area of the Tagless

directory while increasing the number of cores. Since the

number of addresses that are mapped to a bloom filter grows

with the number of cores, the possibility of false positives

increases when using a fixed bloom filter size. We therefore

increase the number of buckets per bloom filter so as to

maintain the same level of false positives as our baseline

design. If we project to a Niagara2 design with a number of

cores from 256–2048, the Tagless directory adds significant

overhead. At 2048 cores, the total directory overhead is

16MB, which is 100% overhead since the aggregate size

of all the L1s in this system is 16MB. We assume that the

directory is uniformly distributed amongst all the cores and

hence the per-core overhead grows more gradually from 2KB

at 256 cores to 8KB at 2048 cores. Figure 3b plots the energy

overhead of reading from a directory tile. The size of sharing

pattern block read varies linearly with the cores. We see a

significant increase in the read energy from 5pJ at 256 cores

to 12pJ at 2048 cores.

III. SPATL :

HYBRID COHERENCE DIRECTORY

A. Sharing Patterns in the Directory

At PACT 2010, the SPACE [20] design was proposed as

a promising technique that compresses directory space for

inclusive cache designs. SPACE was based on observations of

application semantics that showed the regular nature of inter-

thread sharing, resulting in many cache blocks having the

same or similar sharing patterns. Thus, the in-cache directory

has a lot of redundancy and replicates the same pattern for

many cache blocks. SPACE decouples the sharing vectors

from the L2 tag and stores the unique sharing patterns in

a pattern table; multiple cache lines with the same pattern

would point to a common entry in the pattern table. The

sharing bit vector per cache tag is replaced with a pointer

whose size is proportional to the number of unique sharing

patterns. Unfortunately, while this provides better scalability

than the base in-cache directory design (reduces the directory

overhead to 40KB for the Niagara2), lines not present at

the L1s continue to bear the pointer overhead, which limits

the overall benefit.

In this work, we extend the idea of eliminating sharing

pattern redundancy to the Tagless buckets. Figure 4a shows

N
u

m
b
e

r
o

f
L
1

 c
a
c
h
e
 s

e
ts

B
u

c
k
e

t's
 P

 b
it

S
h
a
ri
n
g
 V

e
c
to

r

T
a
g

e
le

s
A

re
a
 K

b
y

te
s

/
C

o
re

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

35

'

the maximum number of patterns displayed in an application

during its execution, with and without the Tagless directory

(system configuration described in Table I in Section V). The

relatively small number of patterns present in the applications

compared to the total number of possible patterns suggests

an opportunity to design a directory that holds only the

sharing patterns present. In the Tagless directory, each bucket

combines and holds the union of sharing patterns of cache

blocks that map to that bucket. This in some cases causes

an overall increase in the total number of patterns since two

addresses with different sharing patterns could map to the

same bucket (causing false positives). Despite this possibility,

as the figure shows, the number of sharing patterns is much

smaller than the total number of buckets (65,536 in our

experiments), indicating that the same sharing pattern gets

replicated across multiple hash table buckets.

4000

3500

3000

2500

2000

1500

1000

500

0

Patterns in cache Patterns in Tagless Dir.

(a) Maximum number of sharing patterns.

13442 9129

Fig. 5: Hybrid Tagless-Pattern directory approach. Each

bucket includes a pointer to the sharing pattern.

directory. Some cache lines with private patterns are tagged

as 2-sharer or 3-sharer because of conflicts in Tagless’s bloom

filter buckets.

Based on our analysis, we observe that despite the pos-

sibility of conflicts, the common sharing patterns across

many cache blocks continues to be exhibited across many

buckets in the Tagless approach. We also observe that the

number of patterns that are frequently referenced is small

(as corroborated by results in [20]). In our experiments, the

number of patterns that applications exhibit is 5.6% (Apache,

SPECjbb), 0.8% (SPLASH2), and 3.8% (PARSEC) of the

total number of buckets in the Tagless directory. Thus, we

propose a solution to enable Tagless directory scalability to a

large number of cores by eliminating the redundant copies

of sharing patterns. The compression of sharing patterns

will complement the compression achieved by the Tagless
directory.

6000

5000

4000

3000

2000

1000

0

Cache

Tagless Dir.

B. SPATL Architecture

As shown in the conventional Tagless directory, every

bucket in the bloom filter specifies the sharing pattern for

blocks mapping to that bucket. We propose to decouple the

sharing pattern for each bucket and hold the different unique

sharing patterns observed in the Tagless directory in a separate

pattern directory table. This eliminates redundancy across the

Tagless directory where the same sharing pattern is replicated

across different buckets. With the directory table storing the

patterns, each bucket now includes a pointer to an entry in
(b) Number of cache blocks for each of N sharers.

Fig. 4: (a) The maximum number of patterns present for a spe-

cific application for Apache. (b) The cache block distribution

over different number of sharers for Apache. For example,

9,000 cache blocks have a private access pattern (only one

processor is accessing the block).

Figure 4b shows the degree of sharing for a snapshot

of the application Apache with and without the use of the

Tagless directory. Each bar in the histogram represents the

number of cache lines with patterns with a certain number

of processors sharing the cache line. Private cache lines are

the dominant sharing pattern for Apache, exhibited by over

75% of the cache lines. We observe that the percentage of

cache lines tagged as private reduces to 40% for the Tagless

the directory, not the actual pattern itself.

We organize the directory table as a two-dimensional

structure with NDir.ways ways and NDir.sets. Each bucket points

to exactly one entry in the directory table and multiple buckets

pointing to the same entry essentially map to the same sharing

pattern. The size of the pattern directory table is fixed (derived

from the application characteristics in Section III-F) and is

entirely on-chip. Hence, when the table capacity is exceeded,

we have a dynamic mechanism to collate patterns that are

similar to each other into a single entry.

In this section, we describe our directory implemented

on a multicore with 16 processors, with 64KB private, 2-

way L1 caches per core, and a Tagless directory with 2

hash functions and 64 buckets per hash function. The con-

ventional Tagless directory design incurs an overhead of

Apache

Barnes

Black.

Body.

Canneal

Chole.

FFT

JBB

LU

Migr.

MP3D

Ocean

Prod.

Radix

Water

X264

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Pattern Table

N Cols
...

...

...
...

.........
...

Bucket[0]'s
Pattern

Pointer
P bit

Sharing Pattern

Ref.

Count

... ...

Set
Index

Cache Tag

Sharing Pattern

Hashk
Hash1 Hashk

N
u
m

b
e

r
o

f
b

lo
c
k
s
/D

ir
 E

n
tr

ie
s

M
a

x
im

u
m

 n
u

m
b

e
r

o
f

p
a

tt
e
rn

s

N
u

m
b
e

r
o

f
L
1

 c
a
c
h
e

 s
e

ts

R
o

w
 i,

 C
o

l j

N
 R

o
w

s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

36

∗

∗

[|

2

HashN ∗ Nbuckets ∗ Pcores bits = 2 * 64 * 16 bits per set of the
Insert cache line Y, Evict cache line XN in set S in Core P

L1 cache. Figure 5 illustrates the SPATL approach. We have a

table with NDir.entries (= NDir.ways NDir.sets) entries, each entry

corresponding to a sharing pattern, which is represented by

a P-bit vector. The directory table itself is a NDir.entries P bit

array; at a moderate number of cores, it does not constitute the

dominant overhead. For each bucket in the Tagless directory,

we replace the sharing vector with a log2(NDir.entries) bit

pointer to indicate the sharing pattern. Every time the sharer

information is needed, the bucket is first hashed into, and the

associated pointer is used to index into and get the appropriate

bitmap entry in the directory table, which represents the sharer

bitmap for the cache tags that map to that bucket. The main

area savings in SPACE comes due to the replacement of the

P-bit vector per bucket with a [log2NDir.entries|-bit pointer.

Core P

Set S

Hash bucket that
set Core P's bit

(Set-Bucket)

...

...

.....

...

Hash bucket that
reset Core P's bit

(Reset-Bucket)

Reset-Bucket

3

...
... 4 Set-Bucket

..................

...

The next two sections describe how SPATL inserts entries

into the Tagless buckets and directory table, how patterns

are dynamically collated when there aren’t any free entries,

... ... 1. Refer pattern
2. Set Core P's bit

3. Change pointer
to new pattern

and how sharing patterns are recalculated on cache block

evictions.

C. Cache Block Insertion

When a cache line is brought in and a sharing pattern

changes (or appears for the first time), the block needs to

modify the sharing pattern associated with its bucket in the

Tagless directory. To achieve this, the set index of the cache

line is used to index to the specific bloom filter, and the tag

is used to map to the specific bucket. When a cache line is

inserted into a specific core i, logically, it modifies Core i’s

sharing bit in the bucket mapped to. This operation is carried

out in SPATL as a sharing pattern change. The current sharing

pattern pointed to by the pointer in the bucket is accessed,

and Core i’s bit is set in the pattern to form the new pattern.

The newly generated pattern needs to be inserted into the

directory table. The pattern table is organized as a two-way

table with Nrows and Ncols. Initially, the incoming sharing

pattern hashes into a particular row and then compares itself

against patterns that already exist in that row (Figure 5). Once

a free entry is found in the directory table, the row index

and column location are used by the bucket to access the

specific entry. Intuitively, the hash function that calculates

the row index in the pattern table has to be unbiased so as to

not increase pollution in any given row. We also require that

similar patterns map to the same row so as to enable useful

collation of sharing patterns that do not differ by many bits

when the protocol runs out of free directory entries.

To satisfy these two seemingly contradictory goals, we use

a simple hash function to calculate the row index into the

pattern table. We use a coarse bit-vector representation of

the original sharing pattern as an index. For example, in a

pattern directory with 16 rows, we could use a coarse-grain

four-bit representation as the encoding to indicate which of

the possible four-core clusters is caching the data. It ensures

that patterns that map to the same row will differ only in

topologically adjacent bits, enabling intelligent collation of

patterns, i.e., without excessive extra traffic due to false

sharers, by limiting this traffic to neighbors or a specific

Fig. 6: Steps involved in inserting a new cache line.

set of sharers (when there are no free patterns available).

Since private and globally-shared (all processors cache a

copy) patterns appear to be common patterns across all the

applications, SPATL dedicates explicit directory indices for

these P + 1 patterns (where P is the number of processors)

without the need for actual directory space.

Eviction of cache blocks. When a cache block is evicted

from a core i, the bloom filter must be modified accordingly.

Merely accessing the bucket to which the block hashes and

resetting the bit corresponding to core i in the sharing pattern

specified by the bucket does not suffice, since other blocks in

the same core’s cache set may map to the same bit. Instead,

the Tagless directory will recalculate the ith bit (associated

with core i) of the bloom filter buckets by rehashing all tags

in the set to detect collisions.

In SPATL we cannot simply recalculate and reset (if

necessary) core i’s bit in the sharing pattern pointed to by

the bucket since other buckets could be pointing to this same

sharing pattern. Instead, we treat such recalculations of the

bloom filter as essentially sharing pattern changes. When core

i’s bit needs to be reset in a bucket, we first access the sharing

pattern pointed to by the bucket. Following this, we reset core

i’s bit and try to reinsert into the pattern table as a new sharing

pattern.

Illustration : Cache line insertion and eviction. Figure 6

illustrates the steps involved in inserting a cache line into

SPATL’s directory. Currently, set S holds cache lines X1,X2,

...XN in its N ways and we would like to insert cache line

Y and displace cache line XN. Not all buckets are affected

as a result of this change, only the buckets that XN and Y

hash into. Hence, in 1., the L1 cache at core P calculates

the current Bloom summary, the new bloom summary with

Y inserted in place of XN, and the difference between the two

summaries. The difference will include at most two buckets.

If Y is the first address in the set to hash into a bucket

from the set S, then Core P’s bit in that bucket needs to

be set (indicated by Set-Bucket in Figure 6). If no other

Old Bloom
Summary

diff
New Bloom

Summary

N

1 ∪ hash (X) i

N-1

1 ∪ hash (X), i

hash (Y)

1

Tag

X2

Tag

X1

Set S's Tagless Dir.

Hash1 Hashk

....
... ...

Tag

XN
P

a
tte

rn
 D

ire
c
to

ry

P
a

tt
e

rn
 P

tr

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

37

address hashes into the same bucket as XN then Core P’s bit

needs to be reset on the bucket to prune out false positives

(indicated by Reset-Bucket). The tuple consisting of (Core

id (P), Set id (S), Set-Bucket, Reset-Bucket) is sent to the

Tagless directory. In 3., the Tagless directory refers to the

Bucket's Pattern Pattern Table

pattern pointed to by the Reset-Bucket, resets Core P’s bit,

inserts the new pattern into the pattern table, and swings

Reset-Bucket’s pointer to point to the new pattern. In 4.,
the Tagless directory refers to the pattern pointed to by the

Set-Bucket, Sets Core P’s bit, inserts the new pattern into

the pattern table, and swings Set-Bucket’s pointer to point to

the new pattern. We do not unset Core P’s bit directly in the

pattern table because there could be potentially other buckets

pointing to the same pattern. Similarly, we do not set Core

P’s bit directly in the pattern table because this could induce

an extra false sharer for buckets already pointing to the entry.

D. Merging Patterns

A key challenge of fixed size superset representation is

the combining of patterns from different cache blocks. In

the hybrid approach, which combines Tagless and the pattern

directory, sharing patterns need to be merged at two different

levels. At the first level, the Tagless directory essentially

associates a single sharing pattern vector with each bucket.

When cache blocks with different sharing patterns hash into

the same bucket, then the Tagless directory will need to store

a union of the sharing patterns of each cache block. This

arises due to the false positives introduced by bloom filters.

The other form of merging occurs when there are more

sharing patterns in the system than the pattern directory

can support. Figure 7 illustrates the process of inserting a

pattern into the pattern table. When inserting a pattern in

the directory, we index into the pattern table and search for

a matching entry. If there are no matching or free entries

that can be allocated from the set, the incoming pattern is

combined with some existing pattern. Note that this merging

does introduce extra false positives for the buckets that

already point to that entry. The pattern directory tries to

minimize pollution by merging the incoming pattern with the

sharing pattern that is closest in terms of hamming distance

(number of sharers in which they differ). This ensures that the

extra sharers/false positives caused by the merging is kept to a

minimum. Existing Tagless directory buckets that point to the

sharing patterns will experience new false positives, but by

ensuring that the merged patterns are similar to each other,

we can limit the number of extra sharers and the resulting

potential for extra coherence traffic.

Removal of sharing patterns. The last challenge that

needs to be addressed is to ensure that entries in the directory

are re-usable once no bucket has the sharing pattern in the

entry. We use a simple scheme of reference counting to detect

when an entry is no longer in use. A counter is associated with

each entry in the directory. This counter is incremented when

a new bucket starts pointing to the entry and is decremented

when a bucket pointing to the entry changes its pointer. The

entry can be reclaimed when the counter reaches zero.

Fig. 7: Inserting and merging a pattern into the pattern table.

E. Directory Accesses

An interesting challenge that SPATL introduces is that it

is possible for the directory to provide an inaccurate list

of sharers to the coherence protocols. Coherence protocols

use the sharers list in multiple ways. On a write access, the

sharing pattern is used to forward invalidations and obtain

the latest version of a cache block if any of the processors is

holding a modified version. In such cases, we adopt a parallel

multicast approach in which the pattern directory pings all

possible sharers indicated by the sharing pattern. Cores will

respond based on their state; whether they have a modified

copy, have simply read it, or do not even cache the block.

Whether the shared cache is inclusive or exclusive deter-

mines whether the information in the directory is needed to

retrieve data on read misses. Consider an inclusive cache

in our baseline system with private caches and shared L2.

With an inclusive L2 cache, the shared L2 has a copy of

each L1 cache block. In case of a read miss on a clean

cache block, the L2 can directly source the data and save

the effort of forwarding messages to one of the L1 sharers.

We only need to add information in the coherence directory

about the new sharer. The directory information is needed

for invalidation on write misses and to locate the modified

copy when transitioning from modified to shared state. With

a non-inclusive (or exclusive) shared L2, on a read miss that

doesn’t find the block at the L2 level, we cannot separate

the condition when the block does not reside at all on-chip

from when the block is cached by one of the L1s without

examining the directory. We have no choice but to check the

directory and ping each of the sharers to see if they have

a copy. Extra sharers/false positives in the directory affect

read miss performance and the directory design has to be

comparatively more robust than inclusive caches.

F. Challenge: Two-Level Conflicts

The base SPATL design without optimization exhibits

much higher false positives when compared to the Tagless

design. The reason for the increase in false positives is the

double conflicts in the Tagless buckets and the pattern table.

As we can see from Figure 4b the Tagless table in general

introduces new sharing patterns because of conflicts at the

Tagless buckets. The pattern table introduces further false

positives after merging patterns. The conflict itself is not a

problem if the original patterns can be recovered when a cache

line is evicted as in the Tagless design. Unfortunately, with

the base hybrid design this recovery ability is lost since the

N Cols

Encode

...

... ...

Merge with

closest pattern

Compare Hamming

distance

1001

1010 0000 0000 0001

N
 R

o
w

s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

38

∗

× ×

∗ ∗ ∗
≤ ≤

∗ ∗ ∗

∗ ∗ ∗ ∗

−

Block A's Pattern

Block B's Pattern

Pattern table

exists in the base design and we demonstrate that employing

such optimizations minimizes the bandwidth cost of pattern

recalculation messages.
1

A and B map to
same bucket

A and B's

Bucket

Extra

2
merges patterns

1101

IV. ANALYTICAL MODEL: BIT BUDGET TRADE-OFFS

We analyze and compare the different coherence directory

schemes in order to understand their reasons for efficiency

using an analytical model. In the following analysis, we
False Positive!

Fig. 8: Two levels of false positives. Dashed lines indicate operations.

pattern table introduces new sharing patterns by ORing with

other unknown patterns.

To illustrate the problem, consider the example with 4

processors shown in Figure 8. Cache line A has the (private)

pattern 0001, while cache line B has the (private) pattern

1000. A and B map to same the bucket in the Tagless

directory. This causes the first level of false positives, and the

bucket creates the pattern 1001, and inserts it into the pattern

table (1.). In the pattern table, the pattern gets merged with

pattern 1101. Pattern 1101 is now stored in the pattern table,

and the bucket stores the pointer pointing to the pattern 1101

(2.).

Now consider when cache line B is evicted. In the SPATL

design, on a cache line eviction, we read the pattern table

entry (1101) and reset Core 0’s bit, which leaves us with 1100.

The false positive from Core 2 caused by merging patterns

in the pattern table cannot be cleared since we do not know

whether Core 2’s bit was set due to pollution in the Tagless

or the Pattern table. With private patterns being the common

patterns, the situation described occurs frequently, leading to

pattern table pollution, and soon enough the pattern table does

not have free entries, leading to more pollution. In the Tagless

design, the signature is recalculated, and the pattern would

naturally become 1000, which is the accurate pattern again.

To clean up the polluted entries, we use pattern recalcu-

assume that the total number of cores in the system is P,

i.e., P private caches need to be kept coherent and each

cache has S sets and W ways. The total number of blocks

that can be cached across all the L1 caches is P S W .

However, typically there are fewer unique blocks due to

data sharing. Assuming f is the fraction of blocks that are

unique in the total number of blocks (0 f 1), then a

coherence directory essentially needs only f S W P entries

to support coherence operations. Hence, the total bit budget

for an idealized directory will be : f P S W (Tb + P),
where Tb is number of tag bits (typically 48 bits on a 64

bit machine). For large multicores if P >> Tb, then the Ideal

Directory = f ∗ P ∗ S ∗ W ∗ P and ∝ O(P
2).

The shadow tags approach that completely replicates the

L1 tags has a bit budget as P S W Tb, which is suited to

the case when most cache lines across the cores are private.

Shadow tags has a smaller overhead than the ideal directory

when all tags are unique (f = 1), because the shadow tags do

not store the actual sharing patterns required by coherence.

Every coherence access needs a W P-way search on Tb-

bit tag fields. Even on small multicores, this is an energy-

intensive associative search. Tagless Directory is built on the

shadow tags approach. It adopts shadow tags’ approach of

using the directory to represent the tags in the L1, but unlike

shadow tags, it only represents a summary of the tags in each

set using a bloom filter. Its overall budget is :

Tagless Budget = S ∗ B ∗ Hn ∗ P
B and Hn are related based on false positives

lation messages at the time of cache evictions. At the time

of cache evictions, we look up the pattern table and multicast E[False positives] = (P — 1) ∗ (1 − (1
1

)W)Hn
B

a pattern recalculation message to other sharing processors

(in this case, when Core 0 evicts B, the Tagless directory

multicasts messages to Core 2 and Core 3 as indicated by the

pattern.) Each individual processor recalculates its signature

of the set and sends back the information. Now, we are able

to reconstruct the precise pattern for the set and place it in

the pattern table. For example, in this case we will be able

to precisely recalculate the pattern for the set as 1000. The

recalculation results in increased messages in the system as

shown in Figure 11. However, the messages are not in the

critical path because they are incurred only on cache evictions.

We investigated a few simple optimizations to address the

increase in traffic in Figure 11. Instead of recalculating

the pattern on every eviction, we use simple decision logic

to decide when to recalculate based on the importance of

the cache line. We evaluate the importance of whether a

pattern recalculation is needed based on information such

as the number of sharers in the pattern, and the number

of entries pointing to the pattern. This information already

B: Buckets/Hash function ; Hn : # of Hash functions

With a large number of cores, P will dominate the relation,

resulting in significant area overhead. SPATL improves over

Tagless by decoupling Tagless’ relation to P and relates

it to the actual sharing patterns in the application. SPATL

allows the designer to carefully consider the application suite

targeted and appropriately size the pattern table. If the pattern

table stores 2
Ip patterns, then the Tagless table needs Ip bits

per entry, which is smaller than P. Therefore, in SPATL the

pattern table grows linearly with P, but the Tagless table itself

grows as log(pattern table size). Overall, SPATL performs

better than Tagless under the following conditions

[S ∗ B ∗ Hn ∗ Ip(Tagless Table) + 2Ip ∗ P(Pattern Table)]

< S ∗ B ∗ Hn ∗ P

In many cases for large multicores P >> Ip, which implies

that (P − Ip) can be approximated as P, so the condition can

be reduced to 2
Ip < S ∗ B ∗ Hn.

1000 0001

1001

P
a
tte

rn
 ta

b
le

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

39

V. EVALUATION

A. Experimental Setup

To evaluate the SPATL design, we use a Simics-based [12]

full system execution-driven simulator, which models the

SPARC architecture. For cache and memory simulation, we

use Ruby from the GEMS toolset [13]. Our baseline is a 16-

tile multicore with private L1 caches and a 16-way shared

inclusive L2 distributed across the tiles. We employ a 4x4

mesh network with virtual cut-through routing. We simulate

two forms of packets: 8-byte control packets for coherence

messages and 72-byte data payload packets for the data

messages. Table I shows the parameters of our simulation

framework.

We use a wide range of workloads, which include com-

mercial server workloads [3] (Apache and SPECjbb2005),

scientific applications (SPLASH2 [18]), and multimedia ap-

plications (PARSEC [4]). We also include two microbench-

marks, migratory and producer-consumer, with known sharing

patterns. Table II lists all the benchmarks and the inputs used

in this study. The table also includes the maximum number of

access patterns for each application, which can be correlated

with the performance of a given SPATL directory size.

We compare against the following coherence directory

designs:

Tagless Directory (TAGLESS). This design studies the

original Tagless approach presented at Micro 2009. The

number of hash functions is fixed at two, and the number

of buckets per set is varied from 16 to 64.

SPATL-N (TAGLESS-SPACE Approach). We also study

a range of SPATL design points varying the directory ta-

ble from 512 — 2048 entries. We evaluate two versions,

namely, SPATL-NOUPDATE (SPATL1024noupdate in chart)

and SPATL. The SPATL-NOUPDATE is a baseline design for

the combined approach. SPATL includes extra optimizations

(discussed in Section III-F) geared to eliminating the transient

false-positives that arise due to conflicts in the TAGLESS

table. For the SPATL design, each tile contains a segment

of the directory table. We charge a 2-cycle penalty for each

SPATL lookup.

B. How accurate is SPATL?

SPATL can achieve false positives similar to the base

Tagless design. We do require extra logic in the design to

eliminate the pollution arising out of two levels of compres-

sion. We eliminate the pollution by designing simple “pattern

recalculation” messages to recalculate the sharing pattern.

These messages are multicast to possible sharers off the

critical path, at eviction time.

In our first set of experiments, we estimate the accuracy

of sharing patterns maintained in SPATL. In a directory-based

coherence protocol, coherence operations refer to the sharer

information to forward coherence messages and the accuracy

of tracking sharers has an impact on overall network utiliza-

tion and hence energy spent in communication. For cases

in which the sharing pattern is represented inaccurately, we

evaluate the average number of extra false sharers experienced

on each directory probe.

Our baseline shown in Figure 9a evaluates the Tagless

directory approach with different hash functions and buckets.

64 buckets and 2 hash functions appears to be the optimal

design with negligible false positives. Figure 9b shows the

SPATL approach. As we can see the SPATL-noupdate (naively

combining TAGLESS with a Pattern table) introduces many

false positives. Once we introduce the optimization to recal-

culate the sharing pattern on evictions, we reduce the false

positives and are able to approach Tagless’ level of accuracy.

In applications including MP3D, FFT, and Water, the SPATL

design does not add any inaccuracy on top of the Tagless

design. This is due to the over provisioning of entries in the

pattern table, which needs to support other applications as

well. In the baseline SPATL-noupdate design, Apache, Barnes,

Bodytrack and SPECjbb experience the lowest accuracy with

the relatively large number of sharing patterns that merge in

complex ways to introduce many false sharers.

There are two possible scenarios where the directory needs

to be referenced. A cache miss in the L1 to look up the

directory to decide which cache could possibly provide the

data. If SPATL were integrated with an inclusive shared L2

cache then we can decide to source data for all misses

from the L2, except in the case when one of the caches

holds a modified copy. If SPATL was integrated with a non-

inclusive shared cache then cache misses need to possibly

source the data from one of the L1s and need the directory for

determining the possible sharers. Write misses (get exclusive

access and update messages) probe the directory for sharer

information to forward invalidations.

Figure 10 demonstrates an interesting trend that the av-

erage false positive sharers is much smaller for invalidation

probes. Most of the SPATL false sharers are introduced as

a result of probes on read misses. If SPATL were integrated

with a non-inclusive cache it would need to satisfy both read

misses and forwarded invalidations; we would need 1024

entries in the pattern table. If SPATL were integrated with

an inclusive shared L2 cache, we can eliminate all the false

positives due to the cache misses and reduce the pattern table

size by 4×.

C. Interconnect Traffic

In this section, we study the interconnect traffic for applica-

tions in SPATL and show that the SPATL directory introduces

minimal increase in on-chip traffic.

SPATL increases traffic compared to fully accurate direc-

tory in two ways. The false positives per reference gener-

ates additional messages, which are on the critical path of

invalidations and lookups. In addition, ―pattern recalculation‖

(presented in Section III-F) at evictions also multicast mes-

sages to sharers. Figure 11 plots the increase in traffic due

to the false positives and the recalculation. In applications

with few sharing patterns, both the traffic caused by false

positives and recalculations are minimal. This is the case

for Blackscholes, Canneal, and all the scientific benchmarks

except Barnes. The additional traffic is less than 2%. Due

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

40

TABLE I: Target System parameters

Cores: 16-way, 3.0 GHz, In order
L1D/I : each 64KB, 2way, 64byte block

Shared Tiled L2 Cache

16 banks, 4MB/Tile, 16way, 14 cycles

Interconnect: 4x4 mesh
128bit wide 2cycle links

Main Memory : 500 cycles

2

TABLE II: Application Characteristics

Benchmark Setup
of

sharing patterns

Network

Utilization

Apache 80000 requests fastforward, 2000 warmup, and 3000 for data

collection

1657 11.6%

JBB2005 350K Tx fastforward, 3000 warmup, and 3000 for data collec-

tion

1054 8.5%

Barnes 8K particles; run-to-completion 707 3.3%

Cholesky lshp.0; run-to-completion 364 2.6%

FFT 64K points; run-to-completion 104 3.7%

LU 512x512 matrix,16x16 block; run-to-completion 249 1.9%

MP3D 40K molecules; 15 parallel steps; warmup 3 steps 181 6.1%

Ocean 258x258 ocean 208 5.7%

Radix 550K 20-bit integers, radix 1024 169 5.0%

Water 512 molecules; run-to-completion 75 2.7%

Migratory 512 exclusive access cache lines 63 0.6%

ProdCon 2K shared cache lines and 8K private cache lines 82 1.5%

Blackscholes 4096 options 450 3.5%

Bodytrack 4 cams, 100 particles, 5 layers, 1 frame 2087 2.2%

Canneal 100K elements, 10K swaps per step, 32 steps 313 4.3%

X264 640 x 360 pixels, 8 frames 590 2.2%

1.5

1

0.5

0

Apache Barnes Black. Body. Canneal Chol. FFT JBB LU Migr. MP3D Ocean Prod. Radix Water X264

(a) Tagless false positives

2

1.5

1

0.5

0

Apache Barnes Black. Body. Canneal Chol. FFT JBB LU Migr. MP3D Ocean Prod. Radix Water X264

(b) SPATL false positives

Fig. 9: (a) Average number of false positives per reference with Tagless approach. (b) Average number of false positives per

reference with SPATL approach.

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig.

Apache Barnes Body. JBB X264

10: False sharers on coherence write

types of traffic is minimal. In applications with many sharing

patterns (i.e., Apache, JBB, Bodytrack), traffic overhead due

to false positives is limited to 5%. On the other hand, traffic

due to multicast is increased by up to 15%. This traffic is

off the critical directory lookup path, so its impact on the

performance could be minimal compared to the traffic due to

false positives. Note that our overall network utilization for

most applications is moderate, which allows the network to

support the increase in traffic.

invalidations.

to recalculation, multicast only happens when there is a hint

of pollution (i.e., pattern table indicates that more than one

sharing pattern has been ORed at the entry). Therefore both

The key to reducing this traffic is the frequency of the

pattern recalculation. Recalculating on every eviction might

be unnecessary because multiple hashing functions could filter

out some of the false positives, meaning the recalculation

traffic is unnecessary in such cases. Recalculating lazily and

TAGLESS 16X2

TAGLESS 32X2

TAGLESS 64X2

5.03 4.03 4.89 5.76 3.67

SPATL2048

SPATL1024

SPATL512

SPATL1024noupdate

All refs

At Invs

A
v
e

ra
g

e
 f

a
ls

e
 p

o
s
it
iv

e
 b

it
s

A
v
e
ra

g
e
 f
a
ls

e
 p

o
s
it
iv

e
 b

it
s

A
v
e
ra

g
e
 f
a
ls

e
 p

o
s
it
iv

e
 b

it
s

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

41

20%

15%

10%

5%

0

Apache Barnes Black. Body. Canneal Chol. FFT JBB LU MP3D Ocean Radix Water X264

Fig. 11: Extra interconnect traffic. The four columns from left to right indicate traffic using the

Every, Random, Count, and Sharer policies.

infrequently on the other hand leads to a heavily polluted pat-

tern table, and introduces further conflicts. We explore three

simple techniques to reduce the recalculation traffic here.

Random chooses to send the recalculation message every

third eviction. Count will only send the recalculation message

if the entries pointing to the pattern reach a certain threshold

(48 in the experiment). Sharer will send the message when

the pattern indicates more than 4 sharers. Figure 11 evaluates

the effects of the three methods on both traffic caused by

recalculation and false positives. In general, less frequent

recalculation leads to more false positives, therefore causes

slight increase in traffic due to false positives. The simple

random method is very effective, reducing the recalculation

traffic to less than 7% for all the applications, while adding

less than 1% traffic from false positives. Count method does

not perform better than random because the number of entries

pointing to a pattern does not translate to the frequency with

which the pattern is referenced. The sharer method has the

highest accuracy. However, the traffic reduction is limited.

D. Area, Energy, Delay

This section reports the area, energy, and access time of

the SPATL directory. CACTI 6.0 [14] is used to estimate

the delay and energy for a 32nm process technology. The

estimated numbers at 16 cores are shown in Table III. The

additional cost of accessing the small pattern directory table

adds little to the access time and energy. The accessing can be

finished within two CPU cycles, and both the accessing time

and power consumption is significantly better than alternative

directory designs including a FULL directory cache and the

shadow tags directory.

The last column in Table III shows the relative area of

the SPATL directory. The area for SPATL includes both the

buckets of pointers and the pattern table. On top of the

Tagless directory, SPATL further compresses the directory by

25% to 42% at 16 cores. This translates to 28% to 37% of

the area of a FULL directory cache. The leakage power is

proportional to the size of the memory structures. We estimate

a 74% reduction in leakage power for SPATL with 512 entries

compared to a FULL directory cache.

E. Scalability

The performance of the SPATL directory directly depends

on the number of sharing patterns present in the cache. This

TABLE III: CACTI estimates for various directory settings. (The

access time and read energy for SPATL include access of the pointer in
SPACE buckets and the pattern table entry.)

Configuration Access
Time(ns)

Read
Energy(fJ)

Storage Relative
to Tagless

FULL dir cache 0.55 16812 2.03×
1.53×

1×
0.58×
0.66×
0.75×

Shadow tags 0.92 67548
Tagless-lookup 0.27 4104
SPATL-512 0.40 4299
SPATL-1024 0.41 4394

SPATL-2048 0.43 4486

is mainly influenced by the application’s characteristics, the

parallelization strategy, and programming patterns. However,

in most architectures the cache block size and cache size

have a key influence on the sharing patterns observed since

they affect properties like false sharing and working set

size in the cache. Figure 12 shows the influence on false

positives by varying the L1 cache parameters. As the size of

the L1 caches increase, the average false positives increases

with more sharing patterns. However, the increase is minor

after the size of the working set is reached. The influence

of larger cache lines is mixed, because false sharing could

lead to either increasing or decreasing sharing patterns. The

false positive increases when line size increases from 32B

to 64B, then decreases when line size further increases to

128B. Characterizing the influence of false sharing on sharing

patterns is beyond the scope of this work.

0.5

0.4

0.3

0.2

0.1

0
32KB 64KB 128KB 32B 64B 128B

Cache size Line size

Fig. 12: Average false positives under varying L1 cache

settings. The group on the left keeps the cache line size

constant (64B) and varies the number of sets. The group on

the right keeps the number of sets constant and varies the

cache line size.

False positives

Pattern recalculation

E
x
tr

a
 t
ra

ff
ic

E
v
e

ry

R
a

n
d

o
m

C

o
u

n
t S

h
a

re
r

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
fa

ls
e

 p
o

s
.

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

42

∗

'
×

To study the scalability of the SPATL directory, we simu-

late three multicore systems (8-core CMP, 16-core CMP, and

32-core CMP). For each system, we experimented with three

SPATL directory setups by varying the size of the pattern

table. Figure 13 shows that SPATL with a limited number

of pattern entries consistently performs similar to FULL.

The network traffic is within 5% of FULL for SPATL-128

using 8 cores, SPATL-1024 using 16 cores, and SPATL-4096

using 32 cores. Interestingly, to achieve an effective directory,

SPATL appears to need a pointer size of K logP (K = 2.4

in our experiments). On top of the tag compression by

TAGLESS, the directory of size M ∗ P is further compressed

to M ∗ K ∗ logP.
Figure 14 projects the size of the directory to systems up to

110%

105%

100%

95%

90%

85%

80%

6 7 8 9 10 11

10 11 12

512 cores. Compared to the tagless directory, SPATL further

compresses the directory by 34% at 16 cores, and by 78%

at 64 cores. We also show the size of the ideal directory for

8, 16, and 32 cores. The ideal directory is a directory cache

that magically holds only the tags present in the L1 caches. It

represents the minimum space for an accurate directory cache.

The size varies across applications and in execution, and we

show the captured maximum size.SPATL has less overheads

compared to the ideal directory cache.

Accelerator-based Manycore Architectures. An impor-

tant design decision in SPATL is the size of the pattern table

(fixed at design-time), which determines how many unique

sharing patterns can be simultaneously supported. In our

experience, we observed large variations between the different

workload suites and in some cases outliers even within a

workload suite (e.g., Barnes in SPLASH2). In our current set

of experiments, we assume general-purpose multicores that

can target any of these workloads. Hence, the pattern table

is sized to support commercial applications like Apache and

SpecJBB, which have myriad read-sharing patterns. Unfor-

tunately, this severely over-provisions the pattern table for

workloads such as SPLASH2. We now consider accelerator-

like manycore architectures which target only data parallel

algorithms like SPLASH2. We found that a 32 entry pattern

table is sufficient for many SPLASH2 applications (other

than Barnes) to perform optimally at 16 cores. Assuming

linear growth in patterns with increase in cores (a reasonable

assumption for data parallel workloads), we only require a

2048 entry pattern table for 1024 cores. We believe providing

a cache coherence directory for a hypothetical 1024-core

accelerator (64KB L1 per core) would only require 0.6MB,

less than 1% of the total L1 capacity.

VI. RELATED WORK

This section discusses different directory designs for CMP.

Shadow tags duplicate all the tags present in the private cache

and construct the sharing vector by looking up the tags when

accessed. The design is simple in concept and works well in

current multicores including SUN’s Niagara2 [17]. The bigger

challenge is that it requires an energy-intensive associative

search to construct the sharing pattern. We have shown that

using the techniques described in this paper we can improve

P = 8 P = 16 P = 32

Fig. 13: Interconnect traffic for SPATL normalized to a full

map in-cache directory. The stacked bars show the extra

traffic caused by false positives and extra traffic caused

by pattern recalculation. X axis represents three multicore

systems (8-core, 16-core, and 32-core). We experiment with

three different SPATL pattern table sizes (2nd X axis: # of

bits of the pattern pointer. Pattern table size (2
#o

f

patternbits

)).

100000

10000

1000

100

10
8 16 32 64 128 256 512

Number of processors

Fig. 14: Storage requirements for a FULL directory cache,

Tagless, SPATL and ideal (all unique tags) directory cache.

Each core has a 64KB private L1 cache.

space consumption by a factor of 3 at 64 cores without the

need for associative lookup.

Tagless directory [19] uses bloom filters to map the tags

in each cache set. The bloom filters concisely summarize the

tags for each set in every core and completely eliminates

the associative search on lookups. Overall, it reduces storage

compared to shadow tags by a factor of the number of ways in

the L1 cache. The benefits of the bloom filters are limited for

multicores with a large number of cores since the per-bucket

sharing vector becomes a significant area overhead.

Directory cache [1], [15] limits the size of the directory by

restricting the number of blocks that the directory holds the

sharing information for. With this limitation, if one block is

not present in the directory cache, either all the shared copies

Baseline

False positives

Pattern recalculation

FULL Directory cache

Tagless

SPATL

Ideal Directory cache

D
ir

e
c
to

ry
 s

iz
e
 (

in
 K

B
)

R
e
la

ti
v
e
 t

ra
ff
ic

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)

ISSN (Online): 2347-601X and Website: www.ijemhs.com

43

have to be invalidated, or the cache block must be defaulted

to shared by all the processors. Cuckoo directory [7] uses an

improved hashing algorithm to eliminate associativity-related

tag evictions in the directory cache. Other proposals try to

combine a small directory cache with a larger in-memory

directory [10], [15]. Such designs essentially emulate a big

directory cache, but they require complex protocol extensions

that touch off-chip metadata, and some directory accesses will

suffer long latencies.

Full map directory [5] is a simple solution for CMPs with

an inclusive shared last-level cache. The bit vector indicating

the sharers is associated with the cache line at the shared

cache. Full map directory imposes significant storage penalty

because the shared cache is usually much larger (24MB on

the latest Itanium [9]) and includes lines that are not cached

at lower levels. SPACE [20] sought to optimize full map by

making the observation that many entries in the shared cache

store redundant patterns. It decouples the sharing pattern from

the directory entries, and only represent patterns present in the

application. Each cache block in the inclusive cache includes

a pointer to the pattern table. Unfortunately, even uncached

blocks include the pointer and this leads to significant space

overhead compared shadow tag-based approaches.

Coarse vectors [8], [16], sharer pointers [2], [11], and

segmented vectors [6] all try to compress the sharing vector

using more compact encodings. Based on the encoding type,

these compressed directories can represent only a limited

number of sharing patterns, and introduce imprecision (hard-

coded at design time) or extra latency for other patterns.

Overall, SPATL is agnostic to the type of shared cache

(inclusive or exclusive), affords significant compression over

the previously known best approach, Tagless, and loses pre-

cision more gracefully based on an application’s coherence

requirements.

VII. CONCLUSIONS

We presented SPATL, a coherence directory that requires

minimal storage (83KB at 16 cores) and can scale at least

up to 512 cores (3MB storage required). SPATL achieves this

by combining two complementary techniques that compress

both the tags and the sharing patterns in the directory. SPATL

adopts Tagless directory’s approach [19] of compressing the

tags using bloom filters to summarize the information in each

set. SPATL further compresses the sharer bit vectors in the

bloom filters based on the observation that due to the regular

nature of programs, many cache blocks exhibit the same

sharing pattern, i.e., there are only a few sharing patterns and

they are replicated in many bloom filters. SPATL maintains a

separate table to hold only the unique patterns that appear in

the application. Multiple bloom filters with the same pattern

point to a common entry. SPATL provides significant benefit

over the Tagless’s tag compression and achieves 34% savings

in storage at 16 cores, and 78% at 64 cores. SPATL’s storage

overhead is the minimum amongst all previous coherence

directory proposals and scales better than even an idealized

directory cache from 16—512 cores. Finally, the directory

storage can be tuned based on the sharing patterns in the

application. Many parallel workloads in SPLASH2 have few

sharing patterns and we find that for a 1024-core (64KB

L1) accelerator architecture that targets only these workloads,

SPATL would need only 600KB of space (less than 1% of total

aggregate L1 space).

REFERENCES

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A two-level
directory architecture for highly scalable cc-NUMA multiprocessors.
IEEE Trans. Parallel Distrib. Syst., 16(1):67–79, 2005.

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation
of directory schemes for cache coherence. In ISCA ’88: Proceedings
of the 15th Annual International Symposium on Computer architecture,
pages 280–298, 1988.

[3] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu,
M. D. Hill, D. A. Wood, and D. J. Sorin. Simulating a $2m commercial
server on a $2k pc. Computer, 36(2):50–57, 2003.

[4] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[5] L. M. Censier and P. Feautrier. A new solution to coherence problems in
multicache systems. IEEE Transactions on Computers, 27:1112–1118,
1978.

[6] J. H. Choi and K. H. Park. Segment directory enhancing the limited
directory cache coherence schemes. In Proc. 13th International Parallel
and Distributed Processing Symp., pages 258–267, 1999.

[7] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo
directory: Efficient and scalable CMP coherence. In HPCA ’11:
Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, 2011.

[8] A. Gupta, W. dietrich Weber, and T. Mowry. Reducing memory
and traffic requirements for scalable directory-based cache coherence
schemes. In International Conference on Parallel Processing, pages
312–321, 1990.

[9] Intel Corporation. Intel Itanium Processor 9300 Series Datasheet.
http://download.intel.com/design/itanium/downloads/322821.pdf, Feb
2010.

[10] J. H. Kelm, M. R. Johnson, S. S. Lumettta, and S. J. Patel. WAYPOINT:
scaling coherence to thousand-core architectures. In Proceedings of the
19th international conference on Parallel architectures and compilation
techniques, pages 99–110, 2010.

[11] J. Laudon and D. Lenoski. The SGI origin: a ccNUMA highly scalable
server. SIGARCH Comput. Archit. News, 25(2):241–251, 1997.

[12] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. Computer, 35(2):50–58,
2002.

[13] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99, 2005.

[14] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0. In Proceedings of the 40th International Symposium on
Microarchitecture, pages 3–14, 2007.

[15] B. W. O’Krafka and A. R. Newton. An empirical evaluation of two
memory-efficient directory methods. In ISCA ’90: Proceedings of the
17th annual international symposium on Computer Architecture, pages
138–147, 1990.

[16] R. T. Simoni, Jr. Cache coherence directories for scalable multipro-
cessors. PhD thesis, Stanford University, Stanford, CA, USA, 1992.

[17] Sun Microsystems, Inc. Opensparc T2 system-on-chip (SoC) mi-
croarchitecture specification. http://www.opensparc.net/opensparc-
t2/index.html, May 2008.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Method-
ological considerations and characterization of the SPLASH-2 parallel
application suite. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.

[19] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. Tagless
coherence directory. In the 42nd Annual International Symposium on
Microarchitecture, Dec. 2009.

[20] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE : Sharing pattern
based directory coherence for multicore scalability. In Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques, Oct. 2010.

http://download.intel.com/design/itanium/downloads/322821.pdf
http://www.opensparc.net/opensparc-

