
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

69 

 

Intel's Helix Ph Processor Efficiency Evaluation 

and Curriculum Energy Model 
 

 

Dr. Chinmay R. Pattanaik
1
*, Mr.Gyana Prakash Bhuyan

2
 

 
1
*Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR 
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR 

 

chinmayaranjan@thenalanda.com*, gyanprakash@thenalanda.com 
 

 
Abstract— The first multi-core/multi-threaded x86-based 

commercial CPU is Intel's Xeon Phi. Xeon Phi is a member of a 
new generation of high performance computing processors that 
aim for both great compute density and energy economy. The 
lack of a high-level energy model prevents Xeon Phi software 
writers from quickly assessing and optimising energy efficiency. 
In order to make it easier to create software that is energy-
efficient, this work presents an instruction-level energy model 
for the Xeon Phi CPU. In order to build this model, we must first 
define the processor's energy usage. We do this by determining 
how energy per instruction varies with the processor's number 
of cores, the number of running threads per core, and the kind 
of instruction. We build an instruction-level energy model based 
on the energy characterization, and we validate the correctness 
of the model between 1% and 5% for real-world benchmarks. 
We demonstrate how the energy model can be applied to these 
benchmarks to identify software inefficiencies and discover that 
Linpack code may be modified to uphold an energy efficiency of 
up to 10%. 

 
Index Terms—Xeon Phi, Energy Characterization, Instruction- 

Level Energy Model. 

 

I. INTRODUCTION 

Current processors increasingly exploit thread-level paral- 

lelism (TLP) to improve performance. As a result, multi- 

core/multi-thread processors are becoming the dominant archi- 

tectures for domains ranging from mobile platforms to high- 

performance computing. As technology scales, the number of 

transistors available will continue to grow every generation. 

To make full use of those transistors and further exploit the 

potential of TLP, architects will design chips with larger core 

counts. While software developers have been focusing on the 

use of many-core/multi-thread processor to boost throughput, 

performance per watt is crucial. As such, it is important to 

study the energy related characteristics of many-core/multi- 

thread processors to facilitate energy-efficient code design. 

Xeon Phi, also known as Knights Corner (KNC), is the 

first product using Intel’s Many Integrated Core (MIC) archi- 

tecture, which is designed for high-performance computing 

(HPC) systems. The processor consists of 60 in-order x86- 

based cores, each of which is able to run at most 4 threads. 

By packing such a large number of hardware threads into a 

single processor, Xeon Phi provides much higher compute 

density than current multi-core processors. Xeon Phi also 

demonstrates impressive energy efficiency. A Xeon Phi based 

system tops the Green500 list as the world’s most energy 

efficient supercomputer as of November 2012 [1]. 

To provide opportunities for software developers to op- 

timize workloads towards energy efficiency, we develop an 

instruction-level energy model of the Xeon Phi processor 

based on detailed energy characterization. An instruction-level 
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energy model links energy consumption directly to software 

code, which is intuitive for software developers to 

understand energy cost. In addtion, this model only needs 

performance counter statistics as input, which existing 

software profiling tools already provide. 

This paper makes the following contributions: 

1) We characterize the energy per instruction (EPI) of Xeon 

Phi using a set of specialized microbenchmarks 

exercising different categories of instructions with varying 

memory behavior, number of active cores, and number of 

active threads per core. 

2) We build an instruction-level energy model for Xeon Phi 

using characterized EPIs along performance counter 

statis- tics to capture workload activity. The model 

accurately predicts dynamic energy consumption with an 

average error rate under 5%. To the best of our 

knowledge, this is the first instruction-level energy model 

for a many- core/multi-thread x86 processor. 

3) This model provides software developers opportunities 

to improve energy efficiency. In particular, our model 

identifies that more than 10% of energy consumption 

is due to redundant software prefetch operations for a 

performance-tuned Linpack implementation. 

 
II. ENERGY MODELING TAXONOMY 

We present a taxonomy of dynamic energy modeling ap- 

proaches based on how to model processor intrinsic energy 

characteristics and how to capture runtime activity factors, 

shown in Table 1. This section explains each taxonomy 

category and where our instruction-level model for Xeon Phi 

fits in. 

 
A. Intrinsic Energy Characteristics 

There are two ways to model intrinsic energy 

characteristics of processor: architecture- and instruction-

level. Architecture- level modeling requires capacitance 

information of major architectural blocks to compute per 

access energy. Instruction- level modeling uses characterized 

EPI to model processor energy. 

Although architecture-level modeling provides detailed 

en- ergy breakdown for each architectural block, which is 

useful for microarchitecture-level exploration, it is often 

difficult to obtain low-level capacitance information. At the 

same time, the microarchitecture-level analysis provides little 

intuition for software developers. 
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Table 1: Taxonomy of energy modeling approaches. 

 

 

 

 

 

 

 
 

 

On the other hand, instruction-level models provide more 

insights for software developers to find opportunities to opti- 

mize their code for energy efficiency. Traditionally these mod- 

els work well for in-order core designs [8], which tends to be 

the dominant microarchitecture for current many-core/multi- 

thread processors, such as Intel’s Xeon Phi and GPUs [4]. 

 
B. Activity Factor 

Activity factors indicate how frequent an architectural block 

is accessed for architecture-level models or how many dy- 

namic instructions are executed in each category of instruc- 

tions for instruction-level models. The methods to collect 

activity factors fall into three categories: 

1) Simulation or Profiling: The first approach obtains 

the activity factors through detailed simulation or profiling. 

Wattch [2] and McPAT [7] are examples of architecture-level 

energy models using simulators to collect per block access 

counts. Tiwari et al. use profiling to provide instruction break- 

down for their instruction-level energy model of embedded 

systems [8]. Although simulation or profiling provides the 

most detailed information for accurate activity factors, it is 

relatively slow to simulate or profile workloads, making it 

unattractive for software developers. 

2) Performance Counters: Performance counters can pro- 

file microarchitectural block activity and instruction break- 

down. Isci et al. use performance counters to estimate activity 

factors for Pentium 4’s architecture-level energy model [5]. 

3) Analytical Performance Model: Analytical performance 

model can quickly predict workload behaviors without the 

need for real hardware or detailed simulators. Previous work 

has demonstrated this approach for out-of-order CPUs [6] and 

GPUs [4]. 

C. Our Energy Model 

We construct an energy model for Xeon Phi using EPI 

to model processor intrinsic energy characteristics and per- 

formance counters to profile activity factors. Our work is 

the first to construct an instruction-level energy model using 

performance counters on a x86-based many-core/multi-thread 

processor. The foundations for our model are characterized 

EPIs of representative instruction types with different number 

of cores and threads per core configuration. This energy model 

can be attached to a range of runtime performance counter 

tools and analytical models. In this work we have integrated 

our model with Intel’s VTune performance profiling tool to 

predict workload dynamic energy. 

Figure 1 illustrates the overall structure of our instruction- 

level energy model and the interface between workloads and 

Micro- 
benchmarks 

 
 

EPIs 

X Energy 

Workloads Performance 

Counters 
(Instruction,Operand) 

Counts 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

72 

 

Fig. 1: Instruction-level energy model. 

the energy model. We develop microbenchmarks for each 

instruction type running with different number of cores and 

threads per core configurations to characterize EPI. 

Instruction is categorized based on its opcode type and 

operands location, since EPI heavily depends on where 

operands reside. Runtime performance counter statistics 

compute the breakdown of instruction and operand source 

combinations. In the end, we multiply the runtime instruction 

counts with the coresponding EPI to compute the total energy 

of the workload. We have validated our model against 

measurement and show software developers can use this 

model to identify energy inefficiencies of their code in Sec. 

V 

III. METHODOLOGY 

This section discusses the background of the Xeon Phi 

pro- cessor, the measurement setup, microbenchmarks 

developed, and power and timing statistics collected for 

microbenchmark characterization. 

A. Xeon Phi Processor 

Xeon Phi is built in a 22 nm process and contains 60 cores 

running at 1.09 GHz, where each core can run 4 threads 

at the same time. Each core is in-order with a 512-bit vector- 

processing unit, a 32 KB L1 I-cache and D-cache and a 512 

KB private L2 cache. Cores are connected together via a ring 

bus and follow the standard MESI coherency protocol for 

maintaining the shared state among cores. 

B. Measurement Setup 

We have instrumented a Xeon Phi card, which is part 

of the Xeon Phi Beta Software Development Platform (SDP), 

for power measurement. We measure voltages and currents 

inside the board to compute dynamic power. The power not 

only includes the power of the Xeon Phi processor, but also 

other components like memory and fan. A National 

Instruments Data Acquisition system collects the statistics 

sampled at 1 KHz, which is sufficient for our purpose. 

C. Microbenchmarks developed 

Each microbenchmark is a loop that iterates a target 

instruc- tion type. We cover all major instruction types, as 

shown in Table 2. Each column presents different instruction 

opcodes, including scalar, vector, vprefetch0 (prefetch to 

L1 cache) and vprefetch1 (prefetch to L2 cache). Each 

row shows the mode of data operand access, including 

register, L1, L2, prefetched from memory (both hardware 

and software prefetch) and memory without prefetch. 

Microbenchmarks are deployed as one copy per hardware 

thread with different number of cores and threads per core 

configuration. We sweep 

 Intrinsic Energy Characteristics 

Architecture-Level Instruction-Level 

Activity 
Factor 

Simulator/ 
Profiler 

Wattch [2]/McPAT [7] 
(Out-of-Order) 

Tiwari [8] 
(Embedded) 

Performance 
Counters 

Isci [5] 
(Out-of-Order) 

This work 

(Xeon Phi) 

Analytical 
Perf. Model 

Karkhanis [6] 
(Out-of-Order) 

Hong [4] 
(GPU) 
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Table 2: EPIs (nJs) of instruction types and modes of data 

operand access for single-core, single-thread. 

 
Power 

 

p1 
 
 
 

p0 

 
c0 c1 Cycles 

 
 
 
 
 
 

the number of cores from 1 to 60 and the number of threads 

per core from 1 to 4. 

D. Timing and Power Statistics Collection 

To compute EPI, Figure 2 shows timing and power statis- 

tics we collect. p0 is the average idle power before the 

microbenchmark starts, including power for fan, memory, 

operating system and leakage. Instruction RDTSC reads the 

cycle before the microbenchmark starts (c0) and right after the 

microbenchmark ends (c1). The difference between c0 and c1 

is the total number of cycles executed by the microbenchmark. 

The measurement setup records the dynamic power sampled 

at 1 KHz as the microbenchmark runs. We use the average 

dynamic power (p1) subtracting the initial idle power (p0), 

the result of which is the power consumed by the mi- 

crobenchmark. Equation 1 computes EPI for each instruction, 

where N is the total number of dynamic instructions in the 

microbenchmark. 

Fig. 2: Statistics collected for EPI characterization. 

 

different scalar or vector instruction subtypes with register 

operands. The second major finding is that the energy cost 

of data movement is significant compared to the energy of 

computation. Using vector instructions as an example, the EPI 

with register operands is 1.00 nJ while the EPI of moving 

data from memory to the ALU without prefetching is 233.17 

nJ. However, the energy cost of data movement can be sig- 

nificantly reduced through intelligent prefetching. We see, for 

example, that moving data from L2 to L1 using vprefetch0 

(1.81 nJ) followed by a vector compute instruction (1.43 nJ) 

is more energy efficient than a vector instruction generating 

a L1 miss and incurring a demand fetch from L2 (8.27 nJ). 

Prefetch instructions do not stall the pipeline as occurs for 

other instructions that generate cache misses, and the idle 

energy of the pipeline stalls significantly adds to the EPI of 

non-prefetch instructions. However, prefetch instructions must 

be used judiciously. For example, issuing a vprefetch1 

when the data is already in L2 results a 1.19 nJ EPI overhead 

with no performance gain. 

B. Single-Core, Multi-Thread Characterization 

We also evaluate EPI by running microbenchmarks on a 

EPI = 
(p1 − p0) ∗ (c1 − c0)/Freq 

N 
IV. XEON   PHI   CHARACTERIZATION 

(1) 
single core with one (1T), two (2T), and four (4T) active 

threads. Figure 3 plots EPIs for different instruction types 

while varying the number of threads per core. We observe 

Energy of instructions mostly depends on instruction types, 

including both opcode types and operand locations in cache 

hierarchy, the number of active threads per core, and the 

number of active cores. Instruction type determines which 

functional units to stress, and different active thread-core 

configurations exhibit different resource contention, both of 

which impact the dynamic energy of a instruction. Since each 

core of Xeon Phi is a simple in-order core, the inter-instruction 

effect within a core is negligible, especially when running on 

many-core/multi-thread cases. In the following sections, we 

present EPI characterization results of Xeon Phi for different 

instruction types with different number of cores and threads 

per core configurations. 

A. Single-Core, Single-Thread Characterization 

Table 2 shows the EPIs for instructions with different 

instruction types and data operand access modes for a single 

thread running on one core. We observe several interesting 

characteristics. First, the EPI of vector instructions with reg- 

ister operands is about 2X compared to scalar instructions. 

However, because the VPU is 512-bit wide, fully-utilized 

vector instructions are actually 8X more energy efficient 

than scalar instructions. We find little EPI variation across 

 

       microbenchmark 

running 
 Scalar Op Vector Op vprefetch0 

(to L1) 
vprefetch1 
(to L2) 

Register 0.45 1.00 N/A N/A 

L1 0.88 1.43 1.19 1.19 

L2 7.72 8.27 1.81 1.19 

Mem w/ 
Prefetch 

52.14 52.69 50.00 25.00 

Mem w/o 
Prefetch 

232.62 233.17 N/A N/A 

Write to 
Mem 

62.14 62.69 N/A N/A 
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that for both scalar and vector instructions, the EPI of 

the 1T configuration is 67% higher than the 2T case. 

This is mainly due to Xeon Phi’s core microarchitecture that 

pro- hibits instruction issue from the same thread in back-to-

back cycles. This means that running one thread per core 

only utilizes half of the core throughput. However, due to 

non- ideal clock gating within the core, the power 

dissipation of 
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Fig. 3: EPI characterization for single-core, multi-thread. 

1T 

2T 

4T 

E
n
e
rg

y
 P

e
r 

In
s
t 

(n
J)

 



International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (Volume 31, Special Issue of January 2019)  

ISSN (Online): 2347-601X and Website: www.ijemhs.com 

75 

 

4T 

2T 

1T 

4T 

2T 

1T 

4T 

2T 

1T 

4T 

2T 

1T 

4T 

2T 

1T 

C
y
c
le

s
 P

e
r 

In
s
tr

u
c
ti

o
n

 
C

y
c
le

s
 P

e
r 

In
s
tr

u
c
ti

o
n

 
C

y
c
le

s
 P

e
r 

In
s
tr

u
c
ti

o
n

 

E
n
e
rg

y
 P

e
r 

In
s
tr

u
c
ti

o
n
 (

n
J)

 
E
n
e
rg

y
 P

e
r 

In
s
tr

u
c
ti

o
n
 (

n
J)

 

 

80 2.5 

70 
2.0 

60 

50 1.5 

40 

30 1.0 

20 
0.5 

10 

0 0.0 

Register-to-Register Vector Add 

160 

140 

120 

100 

80 

60 

40 

20 

0 

 

 

 

1.0 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0.0 
 

 
80 70 

70 60 

60 
50

 

50 
40 

40 
30 

30 

20 
20 

10 10 

0 0 

Memory-to-Register Load 

160 70 

140 60 

120 
50

 

100 
40 

80 
30 

60 

40 
20 

20 10 

0 0 
 

 
80 70 

70 60 

60 
50

 

50 
40 

40 
30 

30 

20 
20 

10 10 

0 0 

Register-to-Memory Store 

160 70 

140 60 

120 
50

 

100 
40 

80 
30 

60 

40 
20 

20 10 

0 0 
0     10   20   30   40   50   60 

Num of Cores 

0     10   20   30   40   50   60 

Num of Cores 

0     10   20   30   40   50   60 

Num of Cores 

0     10   20   30   40    50   60 

Num of Cores 

Fig. 4: Total power, per-core CPI, chip bandwidth, and per-core EPI sweeping the number of active cores and threads. 

the core running a single thread remains at 83% of the fully- 

utilized core, explaining why the 1T configuration is energy 

inefficient. The second effect we observe is that for scalar 

and vector instructions with register operands or L1 hit cache 

access, the 2T configuration already fully utilizes the core and 

hence increasing to 4 threads does not change the EPI. For 

instructions with cache accesses that have longer delay due 

to L2 hits (v l2), hardware prefetch (v hwp), or L2 misses 

(nohwp), more threads allow overlap with memory access idle 

time and we observe a decrease in EPI. Finally, the EPI of 

prefetch instructions is largely independent of the number of 

threads per core because the throughput is mainly dependent 

on the number of entries in the prefetch buffer, which is 

independent of the thread configuration. 

C. Multi-Core, Multi-Thread Characterization 

As a many-core processor, Xeon Phi is commonly expected 

to utilize a large number of cores and active thread contexts. 

The energy characteristics of the processor are different with 

many active cores because of contention on shared, un-core 

resources such as the ring interconnect, memory controllers, 

and DRAMs. In this section, we study how EPI scales with 

the number of cores ranging from one to sixty. In order to 

study contention effect, we analyze three microbenchmarks 
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with distinct properties. The first microbenchmark, Register- 

to-Register Vector Add, performs a simple vector arithmetic 

operation with register source and destination operands, 

incur- ring no cache misses. The second microbenchmark, 

Memory- to-Register Load, is designed to load a full cache 

line from memory into the local cache and deliver a vector of 

data into the register file. Finally, Register-to-Memory 

Store, fetches the cache line from memory to the local 

cache and writes the value of the vector register to the 

memory location. This microbenchmark requires an equal 

amount of read and write bandwidth to the memory system. 

Each row in Figure 4 presents results for the three 

microbenchmarks. We show total power consumption, per-

core CPI, total chip memory bandwidth and per-core EPI. 

Register-to-Register Vector Add: Starting from the chip 

power consumption on the upper left of Figure 4, we observe 

that for all threads configurations (1T, 2T, and 4T) the total 

chip power increases linearly with the number of cores, 

reflecting nearly ideal clock gating when all threads in 

the core are completely idle. We also notice that from 1T 

to 2T power increases by 1.2X but power does not change 

from 2T to 4T, as observed in our previous single-core multi-

thread characterization. The CPI characterization plot also 

illustrates that 1T performance is more than 2X worse 
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Measured Avg EPI 
Model Avg EPI 

Table 3: Performance counter equations to compute 

combinations of instruction types and operand source modes. 
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than 2T and 4T due to the pipeline bubble effect discussed 

previously. The third plot in the first row of the figure shows 

that bandwidth is zero, since vector instructions with register 

operands do not generate any memory activity. We see that 

EPI is constant while scaling the number of active cores since 

register operations are local to each core and independent of 

other core activity. 

Fig. 5: EPI validation of energy model. 

Register-to-Memory Store: The third microbenchmark com- 

bines the memory read characteristic of the previous mi- 

crobenchmark with an equal amount of write bandwidth. 

Starting from the power and CPI characterization, we see 

an obvious decrease in the power slope and a significant 

increase in CPI, both of which can be explained by the 

bandwidth characterization. Bandwidth utilization increases 

very quickly from 1 to 20 cores and almost doubles the 

bandwidth requirement for the previous microbenchmark at 

this point. Bandwidth quickly saturates after 30 cores for 

the 2T and 4T configurations, and at 60 cores all thread 

configurations consume nearly the same bandwidth. Combing 

the effects of power and CPI scaling, the EPI characterization 

shows that a large number of active cores is detrimental 

and a minimum EPI exists for fewer active cores due to 

the bandwidth saturation of such a large number of memory 

requests. 

Memory-to-Register Load: The second row in Figure 4 

characterizes the behavior of the memory read intensive mi- 

crobenchmark. The total power more than doubles compared 

to the core-bound microbenchmark, reflecting the increased 

activity of the ring interconnect, the memory controllers, and 

DRAMs. Additional active threads per core lead to higher 

power consumption due to the additional memory requests 

initiated by those threads. We see that the slope of the power 

curve gradually decreases after about 10 active cores due to 

the amortization of the power consumption of the un-core 

resources. The CPI characterization demonstrates that scaling 

from 1 core to 60 cores slowly increases the CPI for all thread 

configurations due to increased effect of shared resource 

contention. Multiple threads per core (4T) exaggerate this 

effect but still offer CPI benefit due to overlapping memory 

requests. These issues are better understood by observing the 

bandwidth characterization results. For 1T there is a linear 

increase in bandwidth with number of active cores, but for 

the 4T case, the processor gradually becomes bandwidth 

starved beyond 40 cores, explaining the CPI results. The EPI 

calculation, shown in Equation 1, illustrates a proportional 

relationship to both power and CPI. The initial steep drop in 

EPI is due to the decreased slope of power while increasing the 

number of cores. After about 20 active cores EPI is relatively 

flat with increased active core counts due to the counteracting 

trends for power and CPI. 

E
P
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n
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Instruction 
Types 

Operand 
Sources 

(Instruction, Operand) Counts 

Scalar Op Register INSTRUCTIONS EXECUTED − 
VPU INSTRUCTIONS EXECUTED 

Vector Op Register VPU INSTRUCTIONS EXECUTED 

 
Scalar & 
Vector Ops 

L1 DATA READ OR WRITE − 
DATA READ MISS OR WRITE MISS 

L2 DATA READ MISS OR WRITE MISS − 
(L2 DATA READ MISS MEM FILL + 
L2 DATA READ MISS CACHE FILL + 
L2 DATA WRITE MISS MEM FILL + 
L2 DATA WRITE MISS CACHE FILL) 

Mem w/ 
Hardware 
Prefetch 

HWP L2MISS 

Write to 
Mem 

L2 WRITE HIT 

vprefetch0 L1 L1 DATA PF1 − 
L1 DATA PF1 MISS 

vprefetch0 L2 L1 DATA PF1 MISS 

vprefetch1 L2 L2 DATA PF2 − 
L2 DATA PF2 MISS 

vprefetch1 MEM L2 DATA PF2 MISS 

All Ops Core-to- 
Core 

L2 DATA READ MISS CACHE FILL + 
L2 DATA WRITE MISS CACHE FILL 
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V. XEON PHI ENERGY MODEL 

Using characterized EPIs from previous section as internal 

parameters, our model takes runtime performance counter 

statistics as input to predict energy consumption of 

workloads. This section describes dynamic performance 

counter statistics collected, model validation against 

measurement, and usecases for software developers to 

identify energy saving opportuni- ties. 

A. Collecting Instruction Information 

We use performance counters to collect the instruction 

mix and operand source behavior of the workloads. These 

statistics are collected using standard performance counters 

with Intel’s VTune tool. Table 3 shows how performance 

counters are used to compute the relevant combinations of 

instruction types and operand sources. 

B. Model Validation 

The energy model provides detailed instruction-level EPI 

breakdowns for complex, real-world applications using only 

performance counter instrumentation. We validate the energy 

model using the SHOC benchmark suite [3] and Linpack 

against energy measurement from our instrumented Xeon Phi 

card. All benchmarks are run using 60 cores and four threads 

per core. The results, shown in Figure 5, demonstrates error 

rates between 1% and 5%. 
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Fig. 6: Energy breakdown of the SHOC workloads and 

Linpack. 

C. Find Potential Opportunities for Energy Efficiency 

The primary use of instruction-level energy model is to 

provide opportunities for software developers to optimize their 

code for energy efficiency. We identify two such opportunities 

for our benchmarks. 

The first use case identifies opportunities to eliminate 

wasteful software prefetch operations. The energy breakdown 

in Figure 6 shows that for Linpack, across different input sizes, 

around 10% of the energy is spent on redundant software 

prefetch operations that fetch data already in the target cache. 

The reason for this inefficiency is because software developers 

insert prefetch instructions to fetch data early hoping to avoid 

memory stalls. Software developers tend to over provision 

prefetch operations because they generally do not hurt per- 

formance if the data is already in the target cache. However, 

redundant prefetch operations increase energy consumption 

because the hardware still needs to execute the prefetch 

instructions and compare tags to see whether the data is in 

the cache or not. Our model identifies that this inefficiency 

can be as high as 10% for complex workloads, providing 

opportunities for software developers to write more energy 

efficient code. 

We also find that the instruction-level energy model can 

be used to find the best version of software implementation 

for a particular algorithm. To illustrate this situation, we 

implement four versions of the stencil algorithm with four 

different prefetch strategies. The results, shown in Figure 7, 

present the performance and energy consumption of the four 

versions of stencil normalized to the original implementation 

which includes both software and hardware prefetching (HW- 

PF+SW-PF). The most optimized version occupy the lower 

right corner of the plot with lower energy and better perfor- 

mance. We see that the version with hardware prefetch only 

(HW-PF only) is 10% more energy efficient than the baseline 

although performance is very similar. These two versions 

also perform significantly better than disabling the hardware 

prefetcher (SW-PF only) and disabling all prefetching. For 

stencil, the hardware prefetcher performs quite well and the 

instruction energy overhead of software prefetching is not 

justified. The other benchmarks do not display this behavior 

because the hardware prefetcher is less effective. 
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Fig. 7: Energy-delay tradeoffs for different prefetch 

configu- rations for the stencil benchmark. 

VI. CONCLUSION 

We present detailed energy characterization of the 

Xeon Phi chip identifying energy behavior trends as a 

function of instruction types and the number of active threads 

and cores. Using this characterization data, we build a highly 

accurate instruction-level energy model for the processor. We 

show that this energy model can be used to identify 

opportunities to improve energy efficiency. This is the first 

work to characterize such a large many-core/multi-thread 

x86-based system and build a high-level energy model for 

software developers. 
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