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Abstract: 

Seldom researched, notably in Iran, are the development of disaggregate models for assessing various property 

damage collision type rates in urban intersections. There doesn't seem to be much research being done on the 

influences on collision frequency at intersections. The major goal of this study is to create statistical models that can 

accurately estimate the frequency of different property damage accidents at signalised approaches in Mashhad, Iran, 

based on geometric, traffic, and regulatory control features. In the city of Mashhad, collisions that occurred in four-

leg signalised junctions were estimated using three negative binomial models, and the results from each model's 

estimation were compared. These collision models include right-angle, rear-end, and total models. Tests using 

statistics were used to evaluate the fit's quality. The effectiveness of independent factors on the frequency of 

collisions resulting in property damage is evaluated using the incidence rate ratio. Paired samples T-test was used to 

control model validation. The frequency of property damage collision types was strongly correlated with 

independent variables including road design, the kind of control system, and traffic characteristics, according to 

modelling of collision types. The study's findings showed that seven independent variables had a significant impact 

on the safety of signalised junctions. 
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1. Introduction 

The overall area where two or more highways join or 

cross, along with the road and any facilities for local 

traffic flows, is referred to as a junction. Road 

segments between intersections are typically less 

dangerous than those at them [Lord, 2000]. Due to the 

fact that many intersections are discovered to be 

particularly collision-prone places, intersections 

demand greater attention during safety evaluations 

than other roadway features because they operate as 

the nodes of the highway network. The majority of 

collisions in urban areas happened at junctions. The 

complex relationships between road users in an 

intersection's effect zone contribute to this to some 

extent. The main issue with these places, which is the 

prevalence of disputes, is directly caused by the 

complicated vehicle movements at intersections. 

Often, if a traffic conflict cannot be avoided, an 

accident will take place.  Traffic safety engineers 

should therefore focus on intersection safety [Pernia et 

al., 2002]. 

The usual practice to understand the interaction between 

geometric and traffic factors with collision causation 

is to establish a relationship between collision occur- 

rence and intersection characteristics. Many research- 

ers have focused on the development of aggregate col- 

lision prediction models, whereby the total expected 

number of collisions at intersections are predicted by 

geometric, environmental, and traffic variables [Bauer 

and Harwood, 2000; Greibe, 2003; Akin and Akbaş, 

2010; Elvik, 2011]. Collision prediction models have 

rarely been developed focusing on predicting different 

collision types in urban intersection In Iran, very little 

research has been conducted studying the effective fac- 

tors in collision type frequency at intersections. 

There are two reasons for predicting disaggregate mod- 

els that estimate and/or explain collision type frequen- 

cies as a function of geometric, environmental, and traf- 

fic factors. The first is that these models can help us to 

predict collision frequencies at signalized intersections 

by collision type and identify sites where these specific 

collision types occur. A second use of these models is 

to understand the differing effects of geometric, traffic, 

and environmental factors on different collision types. 

Thus, the effective variables on collision occurrence 

may have different coefficients for the different colli- 

sion types and to consider a unique coefficient for all of 
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the collision types may be unrealistic. 

Because intersection approaches may have one of the 

collision types as the predominant type, separate 

mod- els of rear-end, right angel collisions would 

provide valuable insights into different variables of 

intersection approach that influence the frequency of 

these specific types of collisions and countermeasure 

effectiveness. Therefore, the main objective of this 

paper is to develop suitable statistical models to 

predict frequencies of dif- ferent types of property 

damage collisions at signalized intersections based on 

geometric, traffic, and regulatory control 

characteristics in the city of Mashhad, Iran. 

 
2. Literature Review 

Several models used to establish a relationship 

between collision occurrence and intersection 

characteristics in- clude the multiple linear regression 

models, Poisson re- gression models and negative 

binomial (NB) regression models. The multiple linear 

regression models have several limitations to describe 

adequately the random, discrete, nonnegative and 

sporadic collision data [Chin and Quddus, 2003]. 

These include the presence of un- desirable statistical 

properties, such as the possibility of negative collision 

counts and the lack of distributional properties, such 

as the condition of normally distributed collision 

occurrence. It is assumed in these models that 

collision data follow normal distribution; however, 

the collision data follow Poisson distribution 

[Anastaso- poulos and Mannering, 2009]. 

Since collision occurrences are necessarily discrete, 

of- ten sporadic and more likely random events, the 

Pois- son regression models appear to be more 

suitable than the multiple linear regression models. A 

well-known limitation of the Poisson model is that 

the distribution restricts the mean and the variance to 

be equal, which seldom holds true with real-life 

collision data. When variance is greater than mean, 

the data are said to be over-dispersed. Over-

dispersion occurs in practice be- cause there are many 

factors affecting collision means and not all of them 

are accounted in the model. Data are said to be under-

dispersed when variance is less than mean [Chin and 

Quddus, 2003]. In a number of recent studies, the 

collision data were found to be significantly over-

dispersed, i.e. the variance is much greater than the 

mean [Naderan and Shahi, 2010; Vogt and Bared, 
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1998]. This will result in incorrect estimation of the 

likelihood of collision occurrence. In overcoming the 

problem of over-dispersion, several researchers have 

employed the negative binomial distribution instead of 

the Poisson [Abdel-Aty and Radwan, 2000; Poch and 

Mannering, 1996; Naderan and Shahi, 2010]. By relax- 

ing the condition of mean equals to variance, negative 

binomial regression models are more suitable in de- 

scribing discrete and nonnegative events. 

Poch and Mannering developed negative binomial 

models predicting the frequency of total, rear-end, an- 

gel and approach-turn collisions using improvement of 

63 four-leg intersections in Washington during 1987 

and 1997. They concluded 16, 18 and 13 independent 

variables were involved in total, rear-end, angel and ap- 

proach turn collisions, respectively. Increment left and 

right-turn, total approach traffic volume in thousands 

average daily traffic and number of phases per cycle 

increase collision frequencies in intersection. The exis- 

tence of protected left-turn lane decrease collision fre- 

quencies in intersection [Poch and Mannering, 1996]. 

Bauer and Harwood reviewed 1306 urban intersections 

in the state of California during 1990 and 1992. They 

used the lognormal regression models to predict the fre- 

quency of total, fatal and injury collisions. 19 indepen- 

dent variables were considered in their modeling pro- 

cess resulting in 9 and 8 significant in the prediction of 

total, fatal and injury collisions, respectively. They also 

found that an increase in average daily traffic volume of 

the main road and crossroad and signal timing increase 

frequency of total collisions. The increasing number of 

lanes on major and cross road, average lane width on 

major and cross road, right-turn channelization and ac- 

cess control on major road decrease frequency of total 

collisions. Furthermore, they observed that an increase 

in the design speed on major road increases frequen- 

cy of fatal and injury collisions [Bauer and Harwood, 

2000]. 

Pernia et al. studied 447 signalized intersections in the 

state of Florida during the period 1990-1997. They ap- 

plied the random effect negative binomial models to 

develop prediction models of all, angel, Left-turn and 

rear-end collisions. They observed that seven of the in- 

dependent variables affect the safety of signalized inter- 

sections: average annual daily traffic, number of lanes 

on major road, presence of median on major road, sur- 

rounding land use (urban or rural), location type (busi- 

ness or other), posted speed on major road and shoulder 

treatment (paved or other) [Pernia et al., 2002]. 

Chin and Quddus studied 52 signalized intersections in 

the southwestern city of Singapore from 1992 to 1999. 

Applying random effect negative binomial prediction 

models, they concluded that eleven independent vari- 

ables affect the safety of signalized intersections. The 

higher total approach and left-turn volume traffic in 

thousand, intersection sight distance, number of bus 

stops surrounding intersection, number of phases per 

cycle, the existence of median width greater than 2m, 

uncontrolled right-turn lane and surveillance camera in- 

crease total annual collision frequencies. The existence 

acceleration section on right-turn lane, increasing num- 

ber of bus bays and Signal control type decreases total 

annual collision frequencies [Chin and Quddus, 2003]. 

Greibe studied 250 signalized intersections in Denmark 

during the period 1991-1998 and considered the influ- 

ence of eight independent variables on the frequency 

of collisions. They applied negative binomial predic- 

tion models and found four significant variables: motor 

vehicle traffic flow in primary and secondary direction, 

number of lanes in primary and secondary direction 

[Greibe, 2003]. 

Wong et al. reviewed 262 signalized intersections in 

Hong Kong during 2002 and 2003. Negative binomial 

regression model was used to study the influence of six- 

teen independent variables on the frequency of slight 

injury collisions. They observed that increasing traffic 

volume (logarithm of annual average daily traffic), pro- 

portion of commercial vehicles, number of pedestrian 

streams, inverse of the average turning radius, kowloon 

area and presence of tram stops increase frequency of 

slight injury collisions. They also found that increasing 

average lane width decreases the frequency of slight in- 

jury collisions [Wong et al., 2007]. 

 
3. Methodology 

 Model Description 

The Poisson regression and negative binomial regres- 

sion are generally used to estimate collision prediction 

models [Lord and Mannering, 2010]. These models 

are suitable for modeling road collision counts that are 
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discrete, nonnegative and sporadic. It is assumed that 

collisions occurring on a particular intersection are in- 

dependent of one another. Collisions occurring at an in- 

tersection approach per unit time (e.g., year) generally 

follow the Poisson distribution. The mean number of 

collisions to be expected at an approach of intersection 

As pointed out by Vogt and Bared the negative binomial 

allows for extra-Poisson variation due to other variables 

not included in the model [Vogt and Bared, 1998]. If the 

 = 0 negative binomial reduces to the Poisson model. 

For the negative binomial distribution the estimated co- 

efficients vector is obtained by maximizing L (  ,  ) . 

in a given time period,  
i   , is as follows: 

n 
L (  ,  )      

y i        

log(  1   j )   log(  1   y  )  (6) 
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approach of intersection number i in a given time period 3.2 Model Evaluation 

and    ,  ,...,    are coefficients to be estimated by  Over-Dispersion 

the modeling. In the Poisson distribution the variance 

of collisions at an approach of intersection i is equal to 

 
i   and the probability of an approach of intersection i 

A decision about whether the Poisson or Negative bino- 

mial model is appropriate can be based on deviance or 

Pearson chi-square statistic. The deviance of a model is 

having y 
i collisions per year is given by: defined as: 

D 
m
  2 ( L 

f
 
 
 L

m
 ) 

 
(7) 

e 
  i  

y i 

P ( y )  i  (2) Where L
f
 is the log-likelihood function (Eq. (3)) that 

y 
i 
! would be achieved if the model gave a perfect fit (  

i 

The coefficients  are estimated by maximizing the = y 
i for each i,  = 0) and L

m
 is the log-likelihood 

log-likelihood function for the L (  ) 

tion [Kim et al., 2006]: 

Poisson distribu- (Eq. (3) or Eq. (6)) of the model under consideration. If 

the latter model is correct, D
m

 is approximately a chi- 

L (  )   ( y 
i 

log 
i 

      log y 
i 
) (3) squared random variable with degrees of freedom equal 

to the number of observations (n) minus the number of 

Here L (  ) is the vector of coefficients and  
i is giv- parameters (p). Value of the deviance greatly in excess 

en by Eq. (1). The value  of that maximizes Eq. (3) is 

the estimated coefficient vector  . 

A major limitation of the Poisson regression model is 

that the variance of the dependent variable (annual col- 

lision frequency), VAR ( y 
i ), is constrained to be equal 

to its mean, E( y 
i ). When the mean and variance of the 

data are not approximately equal, the variance of the 

estimated Poisson model coefficients tend to be under- 

estimated and the coefficients themselves are biased. 

This limitation can be readily overcome by using the 

negative binomial model [Kim et al., 2006]. 

The negative binomial regression model includes a qua- 

of n-p suggests that the model is over-dispersed due to 

missing variables and/or non-Poisson form. Thus when 

deviance divided by degrees of freedom is significantly 

larger than 1, over-dispersion is indicated [Vogt and 

Bared, 1998]. 

 
 Goodness of Fit 

Similar to the R
2
 in linear regression, a measure based 

on the standardized residuals, Pearson's R
2
, can be cal- 

culated for each generalized linear model to give some 

indication of the goodness-of-fit [Vogt and Bared, 

1998]. 

the model variance [Kim et al., 2006]. The negative bi- nomial regression model is represented by: 

 

0 i i 
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y 

served number of collision at ith approach of intersec- variables of real geometric, traffic and control situa- 

tion during a time period; 
^   

= Estimated number of 
i        

tions. Most of geometry related variables were taken 

collisions during a time period; y = Average collision 

counts at all intersections of interest, n = number of ob- 

servation. 

 

 Model Interpretation 

The Incidence rate ratio (IRR), i.e. exp(β) were comput- 

ed to facilitate interpretation of the variables included 

in the model. If IRR of a given variable is much less 

than 1.0, then an increase in value of the variable is as- 

sociated with a significant improvement in safety. Con- 

versely, if IRR is much greater than 1.0, an increase in 

the value of the variable is associated with a significant 

decline in safety. Otherwise, the variable has no effect 

on safety [Chin and Quddus, 2003]. 

 
 Data 

To establish a suitable statistical model that examines 

the relationship between property damage collisions 

frequency and the geometric, traffic and regulatory 

control   characteristics   of   signalized   intersections, 

a total of 50 four-legged signalized intersections in 

the city of Mashhad, Iran were used. The number of 

intersections may appear small but it covers quite 

a large area of city accounting for more than 45% 

of such intersections. Collision severity is classi- 

fied into three categories based on the level of injury 

sustained in the collision: fatal, injury, and property- 

damage-only. This study focuses on property dam- 

age collisions only. The collision data were collected 

from the forms filled by police officer at collision 

scenes. Each four-leg urban signalized intersection 

was divided into four separate approaches and colli- 

sion data were taken at each approach for 75 meter 

distance from the center of the intersection. In the 

police report in Iran, the collision occurred between 

75 m to the center of the intersection is labeled „at 

intersection‟ or „influenced by intersection‟. In the 

event that the collision occurred in the center of the 

intersection, collisions were assigned to the approach 

of the faulty vehicle. A total of 1532 property dam- 

age collision data were gathered for 2007. To obtain 

a dependable model, it is necessary that the intersec- 

tion and its approaches be considered by independent 

from 1:2000 scale Mashhad map, and traffic related 

variables were obtained from Mashhad transporta- 

tion and traffic organization. The principle used to 

select explanatory variables was to include as many 

useful variables as possible based on the data avail- 

able and engineering judgment. According to these 

criteria, for each approach, a total of 23 possible ex- 

planatory variables were considered. A sample sum- 

mary statistics of explanatory variables is presented 

in Table 1. 

To prepare for model development, it is appropriate 

to ask what variables correlate strongly with collision 

counts. Thus, an analysis of correlation coefficients be- 

tween collision types and intersection variables for the 

signalized intersections was carried out using Probabil- 

ity values (P-value) to gain an insight of the effective 

variables. A small P-value indicates that a correlation 

is significant; a large one indicates that no particular 

significance can be attached to it. The positive and 

negative significant correlation means p-value is less 

than 0.1 and insignificant p-value is in excess of 0.1. 

The results showed the correlations between number 

of through traffic lanes in each approach, width of ap- 

proach, protected exclusive left turn phase, existence 

of exclusive left and/or right turn lane(s) and its (their) 

number, width and length, median width in approach, 

right and/or Left turn, total and/or through traffic vol- 

ume of approach (logarithm of average daily traffic) 

correlate positively with each of three collision types. 

Skew angel, one-way or two-way the approaches cor- 

relate negatively with each of three collision types. 

Exclusive right turn lane is insignificant in rear-end 

and right angel collisions. The distance of bus-stop in 

arrival direction to intersection is insignificant in rear- 

end collisions. The distance of bus-stop in exit direc- 

tion to intersection and number of phases in each cycle 

are insignificant in right angel collisions. Existence of 

control camera is insignificant in total and right angel 

collisions. Type of intersection control system is insig- 

nificant in each of three collision types. 

The correlation coefficients between independent vari- 

ables are considered and found that all of correlation co- 

efficients are under 0.5; therefore, correlation is small. 
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4. Property Damage Collisions Types Fre- 

quency Models 

The objective of this study is to develop statistical mod- 

els of the property damage collisions types frequency 

on individual intersection approaches (i.e. a four-legged 

intersection oriented north-south, east-west would have 

four approaches: northbound, southbound, eastbound 

and westbound). In this study has been tried to develop 

below models to predict property damage collision type 

frequency in signalized four-leg intersection: (1) total, 

(2) rear-end, (3) right angel collision frequency predict- 

ed models. The relative frequency (percent) of property 

damage collisions of right angel, rear-end, sideswipe, 

head-on, other cases and rear-side is 55.9%, 23.7%, 

11.4%, 3.9%, 3.5% and 1.5%, respectively. Therefore, 

right angel and rear-end property damage collisions are 

major collision in signalized intersection. The model- 

ing was done using statistical analysis software (SAS). 

In all cases the dependent variable (annual collision 

frequency) will be a non-negative integer. A summary 

statistics of dependent variables is presented on Table 

2. As table 2 reveals the variance to mean ratio is great- 

er than one that represents the collision data is over- 

dispersed. The collision data frequency distribution is 

presented in figure 1. 

Figure 1 highlights that the shapes of collision frequen- 

cies follow negative binomial distribution. Negative bi- 

nomial regression was used because of the collision data 

were over-dispersed. For negative binomial regression, 

tion modeling approach, models were developed for 

collision types. In each case, an initial “full” model was 

developed that included all variables. Initial problems, 

such as multicollinearity, were addressed and affected 

variables were removed as appropriate. The result- 

ing “full” model most completely explains the effects 

of the variables on intersection safety. Though not all 

variables are statistically significant in the initial model, 

many displayed practical significance and would likely 

become statistically significant if the sample size were 

increased. In the next step, variables were removed 

from the initial model based upon p-values. After re- 

moving the variable in the model with the highest p- 

value, the coefficients and p-values of the remaining 

variables were examined for changes due to multicol- 

linearity. Models were reduced until all variables had 

p-values of 0.10 or less to arrive at the final “reduced” 

model. In each step of modeling, the correlation matrix 

was studied and if two variables were correlated strong- 

ly with each other, one variable was excluded from the 

model on the condition that the model fit did not suffer 

significantly. 

The Multicollinearity describes the strength of an as- 

sociation between variables. An association between 

variables means that the value of one variable can be 

predicted, to some extent, by the value of the other. Variance 

inflation factor (VIF) is common way for de- tecting 

multicollinearity. VIF is defined by equation (9): 

1 

the regression parameters were estimated by maximum 

likelihood method with GENMOD procedure in SAS. 

VIF 
k
  (9) 

1  R 2 

The SAS procedure GENMOD software fits a general- 

ized linear model to the data by maximum likelihood 

estimation of the parameter vector β .There is, in gener- 

al, no closed form solution for the maximum likelihood 

estimates of the parameters. The GENMOD procedure 

estimates the parameters of the model numerically 

through an iterative fitting process. 

The dispersion parameter  is also estimated by maxi- 

mum likelihood or, optionally, by the residual deviance 

or by Pearson's chi-square divided by the degrees of 

freedom. Covariances, standard errors, and p-values are 

computed for the estimated parameters based on the as- 

ymptotic normality of maximum likelihood estimators. 

Using GENMOD procedure and a backward elimina- 

Where R 
2 

is the R
2
-value obtained by regressing the k

th
 

predictor on the remaining predictors. Note that VIF ex- 

ists for each of the k predictors in a multiple regression 

model. We can decide to throw out which variable by 

examining the size of VIF. A general rule is that the VIF 

should not exceed 5 [Belsley et al., 1980]. 

 
      Total Property Damage Collisions Frequen- 

cy Predicted Model 

Total property damage collisions occurred in intersec- tion 

include head-on, rear-end, right angel, rear-side and 

sideswipe collisions Negative binomial estimation results of 

total annual property damage collisions fre- quency at 

intersection approaches are presented in table 

3. This table includes the explanatory variables, degree 
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Table 1. Summary statistics of the explanatory variables in the study 
 

Symbol Explanatory Variable Min Max Mean 
Standard 

deviation (S.D.) 
XNL Number of through traffic lanes in each approach 2 9 5.89 1.3 

XW Width of approach (in meter) 7.64 34.5 20.87 4.62 

XLT 
Exclusive left turn lane (1 if exclusive left turn 
lane, 0 otherwise) 

0 1 0.46 0.50 

XPLT 
Protected exclusive left turn phase (1 if protected 
left turn phase, 0 otherwise) 

0 1 0.03 0.17 

XNLT Number of exclusive left turn lanes 0 1 0.46 0.50 
XWLT Width of exclusive left turn lane (in meter) 0 4 1.16 1.35 
XLLT Length of exclusive left turn lane (in meter) 0 72.13 12.9 15.67 

XRT 
Exclusive right turn lane (1 if exclusive right turn 
lane, 0 otherwise) 

0 1 0.46 0.50 

XNRT Number of exclusive right turn lanes 0 3 0.87 0.96 
XWRT Width of exclusive right turn lane (in meter) 0 12 3.12 3.43 
XLRT Length of exclusive right turn lane (in meter) 0 60 9.81 12.58 
XMW Median width in approach (in meter) 0 8.88 2.41 2.22 

 

XDBSA 

The distance of bus-stop in arrival direction to 
intersection (1 if distance bus stop greater than 50 

m, 0 otherwise) 

 

0 
 

1 
 

0.81 
 

0.39 

 

XDBSE 

The distance of bus-stop in exit direction to 

intersection (1 if distance bus stop greater than 50 
m, 0 otherwise) 

 

0 

 

1 

 

0.76 

 

0.42 

XDM 
One-way or two-way the approaches (1 if one-way 
approach, 0 otherwise) 

0 1 0.1 0.31 

XSA 
skew angel (The angle between major and minor 
approaches, in degrees) 

0 126.26 44.64 45.8 

XNPH Number of phases in each cycle 2 4 2.38 0.56 

XSC 
Existence of control camera (1 if a control camera 
exist in an intersection, 0 otherwise) 

0 1 0.14 0.35 

XTCS 
Type of intersection control system (1 if adaptive 
control system, 0 otherwise) 

0 1 0.44 0.50 

XTHTV Through traffic volume (in logarithm) 3.94 4.88 4.427 0.179 

XRTV Right turn traffic volume (in logarithm) 0 4.11 3.072 0.995 

XLTV Left turn traffic volume( in logarithm) 0 4.12 3.111 1.024 

XTTV Total traffic volume of approach (in logarithm) 3.94 4.93 4.551 0.168 

Table 2. Summary statistics of the dependent variables in the study 
 

Property damage 

collision type 
Symbol Min Max Mean 

Standard 

deviation (S.D.) 
Variance 

Variance to mean 

ratio 

Total collision y 
TDA 

0 38 7.66 6.12 37.45 4.89 

Rear-End collision y 
RDA 

0 13 1.84 2.42 5.86 3.18 

Right angel collisions y 
SDA 

0 30 4.21 4.09 16.73 3.97 

of freedom, estimated coefficients, p-value, incidence 

rate ratio (IRR), variance inflation factor (VIF) and dis- 

persion parameter. Goodness of fit tests are also shown 

in table 4. In table 3, the variables with a positive sign 

increasing collision frequency and a negative sign de- 

creasing collision frequency. The variables included in 

this model (and rear-end and right angel property dam- 
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age collisions predicted models) are those that 

resulted in the lowest p-value (after a systematic 

evaluation of all variables) and were selected from 

possible explor- atory variables available. IRR was 

also calculated to facilitate interpretation of the 

variables included in this model. As shown in table 

3, the existence protected ex- clusive left turn 

phase, the increasing the median width, 
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Figure 1. Total, rear-end and right angel property damage collisions frequency distribution at four-leg urban signalized 

intersection approaches 

number of phases per cycle, through, right and left turn traffic 

volume of approach increase total property dam- age 

collisions frequency and the increasing skew angel decreases 

total property damage collisions frequency. Total property 

damage collisions frequency predicted model as follows: 

Ln(y
TDA

) = -3.9034 + 0.3207x
PLT 

+ 0.1166x
MW 

- 0.003x
SA

 

+ 0.1882x
NPH 

+ 0.922x
THTV 

+ 0.1126x
RTV 

+ 0.2222x
LTV 

(10) 

The parameters of above model are described in table 

3. The coefficient variable of protected exclusive left- turn 

phase shows the existence of protected exclusive left turn 

phase tend to increase rear-end collisions. This can be 

explained by considering the fact that in above mentioned 

intersections approaches which have a pro- tected exclusive 

left turn phase, left-turn traffic volume 

is high; however, there is only one exclusive left turn lane. 

In such intersections, the drivers that aim to turn left use 

straight lanes because of the number of exclu- sive left turn 

lanes are not proportional to left-turn traf- fic volume. When 

a vehicle stops to complete left turn maneuver in straight 

lanes, it conflicts to vehicles that intend to move straight 

direction. Therefore, the prob- ability of rear-end collisions 

during the phase change periods increases. 

The increasing median width of approaches intersec- tion 

increases the total property damage collisions fre- quency. 

Wider median widths usually come from larger intersections 

and they allow greater degrees of spatial freedom for left-

turning vehicles. Near the stop line, wider median widths 

may also create more conflicts as 

Table 3. Negative binomial estimation results for total, rear-end and right angel annual property damage collisions frequency 
 

 

Variable 

 
Variable 

symbol 

Total annual property damage collisions 
frequency 

Rear-end annual property damage collisions 
frequency 

Right angel annual property damage collisions 
frequency 

Coefficient 

estimate 

 

P-value 
Incidence 

rate ratio 

Variance 

inflation 

factor 

Coefficient 

estimate 

 

P-value 
Incidence 

rate ratio 

Variance 

inflation 

factor 

Coefficient 

estimate 

 

P-value 
Incidence 

rate ratio 

Variance 

inflation 

factor 

Intercept  0 -3.9034 0.0012 -a -b -11.463 <0.0001 - - - - - - 

Protected 

exclusive left turn 

phase (1 if 

protected left turn 

phase, 0 

otherwise) 

 

 
XPLT 

 

 
0.3207 

 

 
0.10 

 

 
1.3781 

 

 
1.11 

 

 
0.6302 

 

 
0.0424 

 

 
1.878 

 

 
1.109 

 

 
- 

 

 
- 

 

 
- 

 

 
- 

Median width in 

approach (in 
meter) 

 
x 

MW 

 

0.1166 

 

<0.0001 

 

1.1237 

 

1.185 

 

0.1301 

 

0.0002 

 

1.138 

 

1.106 

 

0.1764 

 

<0.0001 

 

1.1929 

 

1.131 

Skew angel (in 
degrees) 

x 
SA 

-0.003 0.0037 0.997 1.329 -c  
 

 
 

 
 -0.0038 0.0012 0.9962 1.073 

Number of phases 
in each cycle 

x 
NPH 

0.1882 0.0092 1.2071 1.124 0.3463 0.006 1.414 1.089 - - - - 

Through traffic 

volume (in 
logarithm) 

 
x 

THTV 

 

0.922 
 

0.0006 
 

2.5143 
 

1.3464 
 

2.1612 
 

<0.0001 
 

8.68 
 

1.091 
 

- 
 

- 
 

- 
 

- 

Right turn traffic 

volume (in 
logarithm) 

 

XRTV 

 

0.1126 

 

0.0427 

 

1.1192 

 

1.542 

 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 

Left turn traffic 

volume (in 

logarithm) 

 

XLTV 

 

0.2222 
 

<0.0001 
 

1.2488 
 

1.502 
 

0.3082 
 

0.0037 
 

1.361 
 

1.091 
 

0.3269 
 

<0.0001 
 

1.3867 
 

1.070 

Negative binomial 

dispersion 

parameter,   , 

 


 

0.1454 -d 
 

- 
 

- 
 

0.3388 
 

- 
 

- 
 

- 
 

0.3048 
 

- 
 

- 
 

- 

a. (-) dash in the column of incidence rate ratio means the value is not defined for intercept. 

b. (-) dash in the column of variance inflation factor means the value is not defined for intercept. 

c. (-) dash in the column of coefficient estimate means the variable is not included the model. 

d. (-) dash in the column of P-value means the value is not defined for negative binomial dispersion parameter. 
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the number of conflict points is higher and movements of 

through vehicles are less channelized. 

In this study, the skew angle for an intersection was de- fined 

as the angel between major and minor approaches. The 

coefficient of skew angel is tiny that shown obtuse approach 

angle reduces the property damage collisions occurrence very 

small amount. This geometry facili- tates an easy 

maneuvering for vehicles turning right from major to minor 

street as well as for vehicles turn- ing left from minor road to 

major road. 

The coefficient variable of number phases per cycle shows 

having a higher number of phases per cycle may increase the 

number of collisions. This is not surpris- ing since most 

collisions occur during the phase change periods. The high 

volume and high congestion inter- sections usually have the 

greater number of phases per cycle. When number of phases 

increased, drivers might get more nervous due to driver 

frustration and might try to complete the maneuver quickly, 

which may lead to severe injury and fatal collisions. 

The high through traffic volume on the approach in- creases 

collision likelihoods. This may be due to the increment in 

the exposure to conflicts. As traffic vol- ume increases, there 

are fewer available gaps for the left-turning opposing 

maneuver as well as right-turning merging maneuver. As a 

result of fewer turning oppor- tunities, drivers may be more 

willing to take risks when making the turn. 

The Increasing right turn traffic volume increases the 

likelihood of collisions occur. To maneuver around to the 

right, it is necessary that vehicles reduce their speed. 

The speed difference with the vehicle moving directly cause 

the collision in intersection where the exclusive right turn 

lane wasn‟t provided because lack of suffi- cient space in 

urban areas. 

The coefficient variable of left turn traffic volume shows 

increasing left turn traffic volume increases the total 

property damage collisions frequency. The left turn 

movement has always propounded one of con- cerned 

problems in intersections. The increasing left turn traffic 

volume increases conflict points between vehicles moving 

left turn and through. The left turn traffic volume is one of 

the effective factors in signal timing, taking up valuable cycle 

time. If aren‟t provided the exclusive left turn lane in 

approaches intersection, occur collision and decrease level of 

service; because, in most cases, it requires crossing the path 

of opposing traffic. 

In table 4, the deviance to degree of ratio is 1.1325 that 

represent the collision data is over-dispersed. Table 3 also 

shows the negative binomial dispersion parameter, 

 , is 0.1454 that the use of the negative binomial model is 

justified by the highly significant value of . The Pear- son R-

square value is equal to 0.80 representing that the model has 

a satisfactory ability in explaining the variation of the data. 

 

 Rear-End Property Damage Collisions Fre- 

quency Predicted Model 

Negative binomial estimation results of rear-end an- nual 

property damage collisions frequency at intersec- tion 

approaches are presented in table 3. Goodness of 

 

Table 4. Goodness of fit test statistics of negative binomial model for total, rear-end and right angel annual property dam- 

age collisions frequency 
 

Item 
Value 

Total collisions Rear-end collisions Right angel collisions 

Number of observations, n  200 200 200 

Number of variables included the 

model, p  , 
8 6 3 

Degree of freedom, n  p  , 192 194 197 

Log likelihood at convergence, L B  1853.3131 -24.2644 523.6928 

Deviance 217.4436 210.8196 213.4101 

Deviance/Degree of freedom 1.1325 1.0867 1.0833 

Pearson chi-square 192.5035 197.1595 197.7024 

Pearson chi-square/Degree of freedom 1.0026 1.0163 1.0036 

Pearson's R-square 0.80 0.69 0.751 
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fit tests are also shown in table 4. As shown in table 3, 

the increasing the protected exclusive left-turn phase, 

median width in approach, through and left turn traffic 

volume of approach increase rear-end property damage 

collisions frequency. Rear-end property damage colli- 

sions frequency predicted model as follows: 

Ln(y
RDA

) = -11.463 + 0.6302x
PLT    

+ 0.1301x
MW    

+ 

0.3463x
NPH 

+ 2.1612x
THTV 

+ 0.3082x
LTV 

(11) 

In table 4, the deviance to degree of freedom ratio is 

1.0867 that represent the collision data is over-dis- 

persed. Table 4 also shows the Negative binomial disper- 

sion parameter, , is 0.3388 that the use of the negative 

binomial model is justified by the highly significant val- 

ue of  . The Pearson R-square value is equal to 0.69 rep- 

resenting that the predictive ability of rear-end collision 

frequency by variables included in this model is 0.69. 

 

 Right Angel Property Damage Collisions 

Frequency Predicted Model 

Negative binomial estimation results of right angel an- 

nual property damage collisions frequency at intersec- 

tion approaches are presented in table 3. Goodness of 

fit tests is also shown in table 4. As shown in table 4, 

the variable of skew angel decrease right angel colli- 

sions frequency. The increasing median widths and Left 

turn traffic volume increase right angel property dam- 

age collisions frequency. Right angel property damage 

collisions frequency predicted model as follows: 

Ln(y
SDA

) = 0.1764x
MW 

- 0.0038x
SA 

+ 0.3269x
LTV 

(12) 

The variables included in this model follow the afore- 

mentioned explanation for total and rear-end collision 

models. 

In table 4, the deviance to degree of freedom is 1.0833 

that represent the collision data is over-dispersed. Table 

3 also shows the Negative binomial dispersion param- 

eter, , is 0.3048 that the use of the negative binomial 

model is justified by the highly significant value of  . 

The Pearson R-square value is equal to 0.751 represent- 

ing that the model has a satisfactory ability in explain- 

ing the variation of the data. 

An important assumption of analysis is that all of the 

predictor variables are statistically independent. Mul- 

ticollinearity refers to the violation of this assumption, 

and describes a situation in which the possible corre- 

lations between predictor variables are significant. To 

eliminate this problem, correlation analysis is conduct- 

ed and found correlation between each pair of variables 

is insignificant, because the coefficient correlation is 

less than 0.5. The Variance inflation factors are com- 

puted to ensure the correlation between an independent 

variable with other independent variables. As shown 

the table 3, all of the variance inflation factors are under 

5; therefore, multicollinearity is low. 

 
 Validation of Models 

Validation of models is one of the major steps to de- 

velop models. The paired samples T-test are used to 

verify if the differences are systematic or caused by 

mere chance [Montgomery, 2004]. To use this method, 

several intersections which are not involved in devel- 

opment modeling are selected and were predicted the 

collisions frequency in their approaches by developed 

model. The paired sample T-test compares the mean of 

observed collisions frequency with predicted collisions 

frequency that was computed based on developed mod- 

els. The paired samples T-test procedure in this study 

was done using SAS software. Table 5 shows the de- 

scriptive statistics for both observed and predicted col- 

lisions frequency. The most relevant statistics for our 

purposes are the two means. Remember, this test is 

based on the difference between the two variables. As 

shown table 5, the significant value is greater than 0.05 

for property damage collisions types frequency mod- 

els. If the significance value is greater than 0.05, cannot 

reject the null hypothesis of no difference between the 

mean of observed and predicted collisions frequency of 

models. 

 
5. Conclusions 

As stated previously, one of the justifications for model- 

ing collision type is to identify which variables contrib- 

ute to certain types of collisions and to compare how 

different significant variables affect safety for different 

collision types. The results show that a handful of the 

available roadway geometric, traffic volume and regu- 

latory control variables affect the safety of four-leg ur- 

ban signalized intersections. The mentioned variables 

are as follow: through traffic volume, right turn traffic 

volume, left turn traffic volume, median width in ap- 

proach, skew angel, number of phases in each cycle, 
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Table 5. Descriptive statistics for both observed and predicted collisions frequency 
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Total property damage 

collision 

Predicted 36 6.28 4.779 0.796 
-0.757 35 0.254 

observed 36 5.94 5.534 0.922 

Rear-end property 

damage collision 

Predicted 36 1.58 1.811 0.302 
0.552 35 0.585 

observed 36 1.42 3.307 0.551 

Right angel property 

damage collision 

Predicted 36 3.31 2.109 0.351 
-1.276 35 0.210 

observed 36 2.75 3.027 0.505 

protected exclusive left turn phase. 

Among traffic variables, traffic volume in general in- 

creases collisions frequency in each three models. As 

traffic volume increases, exposure to risk (at the site) 

increases. The traffic volume is generally not viewed 

as a controllable factor but instead an important predic- 

tor of collisions, since controlling total traffic volume is 

generally not an option to engineers or planners. As the 

Incidence rate ratio (IRR) in table 3 shows increasing 

through traffic volume at one unit increases total and 

rear-end collisions frequency per year about 2.5 and 

8.68 times, respectively. The increment of right turn 

traffic volume increases rear-end annual property dam- 

age collisions frequency by 11.9%. The increasing left 

turn traffic volume increase total, rear-end and right an- 

gel collisions frequency by 24.9%, 36.1% and 38.7%, 

respectively. 

The influential geometric variables which affect the 

type of collisions occurrences are: median width in ap- 

proach, skew angel, number of phases in each cycle, 

protected exclusive left turn phase. The effect of these 

variables on collisions frequency in urban signalized 

intersection is summarized below: 

• The existence of protected exclusive left turn phase 

increases total and rear-end collisions frequency at 

37.8%, and 87.8%, respectively. 

• The increment of median width in approach increases 

total, rear-end and right angel collisions frequency at 

12.4%, 13.8% and 19.3%, respectively. 

• The increment of skew angel decreases total and right 

angel collisions frequency at 0.3% and 0.4%, respec- 

tively. 

• The increment of number of phases in each cycle 

increases total and rear-end collisions frequency at 

20.7%, and 41.4%, respectively. 

The modeling of collision type frequencies clearly 

demonstrates, at least statistically, that collision types 

are correlated with set of predictors to different coef- 

ficients. The estimation of collision type models may 

lead to insights as to the relative effectiveness of vari- 

ous countermeasures and/or predictive variables. 

 
6. Recommendation 

That is not possible to predict models of other colli- 

sion types because the data collection was complete. 

If the data collection of the type of collisions occur- 

rence in intersection is completely available over a 

period of several years, it will be possible to estimate 

sideswipe, rear-side and other property damage colli- 

sion models in intersection. In addition, other variables 

entering the modeling which indicated the road pave- 

ment and weather conditions may cause the predict- 

ability of models will improve but were unavailable 

for this study. Finally, it is recommended that collision 

type models be estimated more routinely in conjunction 

and as complements to total collision models to identify 

different effective factors on property damage collision 

types and select feasible countermeasure effectiveness. 
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