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Abstract 

In this study, past rainfall depths are the only input data used to examine the precision of short-term rainfall forecasts made 

using time-series analytic approaches. Artificial neural networks (ANN), non-parametric nearest-neighbors, and linear 

stochastic auto-regressive moving average (ARMA) models are the strategies that are suggested here. A linked rainfall-runoff 

forecasting approach is then implemented for a case study on the Italian Apennines mountains utilising the rainfall forecasts 

generated using the discussed methodologies and a lumped conceptual rainfall-runoff model. The study examines and 

contrasts the relative merits and drawbacks of each time-series analysis method used to forecast rainfall with lead times 

ranging from 1 to 6 hours. The results also indicate how the considered time-series analysis techniques, and especially those 

based on the use of ANN, provide a significant improvement in the flood forecasting accuracy in comparison to the use of 

simple rainfall prediction approaches of heuristic type, which are often applied in hydrological practise.  
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1. Introduction 

 
It has been accepted that the inclusion of 

quantitative precipitation forecasting (QPF) in flood 

warning systems plays a crucial role in extending 

the lead-time of the river flow forecast, which may 

permit a more prompt execution of flood control 

measures (Brath et al., 1988). The QPF integration 

is especially critical in small and medium-sized 

mountainous basins where a precipitation forecast is 

required for an expansion of the lead-time of the 

flood warning due to the short response time of the 

watershed. Since rainfall is one of the hardest parts 

of the hydrological cycle to predict (see, for 

example, French et al., 1992), it is widely 

acknowledged that obtaining a reliable QPF is a 

difficult task. Furthermore, both stochastic and 

deterministic rainfall prediction models still perform 

poorly due to significant uncertainties.  

Numerical weather prediction models offer 

intriguing prospects for the future, but sadly, they 

do not currently appear to be able to produce 

precise rainfall forecasts at the temporal and 

spatial precision required by many hydrologic 

applications (Brath, 1999). 

Nowcasting, or the production of extremely 

short-term forecasts based on extrapolation of 

present weather conditions, is made possible by 

the timely application of remote sensing 

observations (radar data and satellite photos). 

Unfortunately, despite giving useful information on 

the pattern of precipitation, the outputs from satellite 

and radar photos do not yet make it possible to 

determine how intense the rain is (Krzysztofowicz, 

1995). 

Due to ground occultation and altitude effects, radar 

detection is additionally challenging in hilly areas. 

The QPF can be obtained using time-series analysis 

techniques as well (Brath et al., 1998; Burlando et al., 

1993). It should be noted that while being sampled at 

fine temporal scales, rainfall time-series typically 

exhibit low persistence in time, which limits the 

forecasting power of these approaches. In the context of 

real-time flood forecasting, these approaches' 

applicability is particularly appealing due to the 

reasonable computing time and data accessibility 

requirements. 

Thus, the benefits potentially achievable from their 

application with real precipita- tion data, in terms of 

efficiency of the flood forecast, are worth analysing. 

The following time-series analysis techniques have 

been applied: (1) Linear stochastic auto-regressive 

moving-average models (ARMA), which express the 

future rainfall as a linear function of past data. The 

approach is thus linear, model-driven and parametric, 

i.e. it first requires the identification of the type of 

relationship among the variables (model identifica- tion) 

and then the estimation of model parameters. 

(2) Artificial neural network architectures (ANN), 

belonging to the non-linear, data-driven approaches: the 

resulting model depends on the available data to be 

“learned”, without any a priori hypothesis about the 

kind of relationship, which is allowed to be complex 
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and non-linear. (3) K-nearest-neighbour method (K-

NN), a non-parametric regression metho- dology, not 

implying any structured interaction, but exploiting 

the closeness (“neighbourhood”) between the most 

recent observations and K “similar” sets of 

observations chosen in an adequately large training 

sample. 

The aim of our analysis is a comparison of the above 

methods, not only in terms of obtained rainfall depths, 

but also from an hydrological point of view, considering 

an integrated rainfall and runoff forecasting system 

operated on a real-world case study. The issued rainfall 

forecasts, therefore, will be routed through a lumped 

conceptual rainfall–runoff transformation model and 

the performances of the flow forecast will be analysed 

and compared. 

Section 2 describes the study area and the data sets, 

along with the use of the data in the analysis. Sections 

3–5 describe the examined methodologies and some 

relevant aspects regarding the application to short- 

term rainfall forecasting. We have gone into more 

details about artificial neural networks and nearest- 

neighbour methods because their application in 

hydrology is relatively new and less well established 

with respect to ARMA models. Section 6 presents and 

compares the obtained results in terms of predicted 

rainfall depths. Section 7 describes the hydrologic 

rainfall–runoff transformation model and introduces 

heuristic rainfall forecasting approaches used as 

benchmarks for the comparison of the time-series 

rainfall forecasting methods. The performances of 

the coupled rainfall–runoff forecasting systems corre- 

sponding to all the rainfall predictive schemes, both 

time-series methods and heuristic approaches, are 

then compared, evaluating the efficiency of the 

rainfall predictions in terms of the transformed river 

discharges. Section 8 offers conclusions and a 

perspective on future developments. 

 

 
2. Case study 

 Study area and data set description 

 

The case study considered herein is referred to the 

Sieve River basin, a first-order tributary of the Arno 

River, located in the Apennines Mountains in Central 

Italy. Since the Sieve joins the right bank of the Arno 

just a few kilometres upstream of the city of Florence, 

the prediction of the corresponding flood hydrographs 

plays a key role in determining the flood risk for the 

city. The main stream length is 58 km, the areal exten- 

sion of the watershed is around 830 km
2
 and the time 

of concentration is approximately 10 h. The closure 

section is Fornacina, where hourly discharge observa- 

tions were collected between 1 January 1992 and 31 

December 1996. 

For the same observation period, hourly tempera- 

tures (for estimating the potential evapo-transpiration) 

were measured at four stations and hourly rainfall 

depths at 12 raingauges located inside the study 

basin, thus allowing the computation of the average 

areal precipitation over the watershed. The rainfall is 

spatially averaged (with the Thiessen polygons 

method) so that it is consistent with the use in the 

lumped rainfall–runoff transformation model. The 
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averaging also improves the efficiency of the forecast, 

compared to the efficiency of making forecasts for 

each one of the gauges separately before averaging 

the results over the basin. In fact, the averaging 

produces a smoothing of non-stationarities and fluc- 

tuations recorded at each gauge, while preserving the 

general pattern of the storm event over the watershed 

(Burlando et al., 1993). 

Given the predominance of the presence of null or 

very low values in the rainfall series and our interest 

in flood forecasting, we limited our analysis, both in 

the calibration and validation phases, to the rainfall 

values belonging to storm events, so as to identify the 

temporal pattern characterising the storms, whose 

persistence properties are different from those of dry 

or low rainfall sequences. A storm event was conven- 

tionally defined as an interval containing at least one 

hourly rainfall depth exceeding 1 mm (“wet” observa- 

tion), preceded by at least 5 and followed by at least 

20 h of rainfall lower than 1 mm, provided that in the 

same time interval the corresponding observed hourly 

discharge increases by at least 20 m
3
/h. In this way, 

the wet observations are followed by a time interval 

not shorter than the concentration time of the basin, so 

that the observed river discharges include the total 

contribution of the surface runoff generated by each 

storm event. In addition, the requirement on the 

change in discharge allows the exclusion of the events 

that do not produce hydrologic response (dry periods). 

In the observation period a total of 84 storm events 

were identified, including a total number of 4580 

hourly rainfall observations, for an average storm 

length of 55 h. 

 
 Description of the calibration approaches 

Two alternative approaches were followed for esti- 

mating the parameters of the models: split-sample 

calibration and adaptive calibration. 

In the split-sample calibration, the storm events 

were divided into two sets: a calibration (or training) 

set and a validation set, where the former contains 

twice the number of events as the latter. The sets 

were chosen so as to have approximately the same 

proportion of low duration–high intensity and high 

duration–low intensity rainfall events. It follows 

that the training set should be representative of the 

characteristics of different kinds of event, thus 

allowing the calibration phase to “learn” an accurate 

representation of the problem domain. These first two 

sets of events will be referred to as split-sample pair 

A. In order to verify the variability of the forecasts 

results if different split-samples are used, three further 

pairs (B–D) of calibration and validation sets were 

selected, by slightly changing the definition of storm 

event described in Section 2.1, so as to include also 

events not considered before. In pair B, the validation 

set remains the same, so that a fair comparison with 

the results described above is allowed. For the 

calibration set, instead, the events (again twice the 

number of the validation events) containing the high- 

est rainfall values (above 3 mm/h) in the remaining 

data were chosen, lowering at the same time the 

threshold imposed on the change in the corresponding 

discharge from 20 to 10 m
3
/s. In pairs C and D, new 

events were chosen for both the calibration and 

validation sets, so as to force  the presence of the 

most extreme rainfall events in the calibration set 

still more (even if at the expense of the corresponding 

increase in discharges), with the aim of improving the 

“learning” of rainfall peaks. The new events in these 

last two experiments were chosen requiring a peak of 

at least 4 and 5 mm/h, respectively. In addition, the 

number of observations following the wet observa- 

tions was reduced in the last case from 20 to 5; in 

this way, there is a further reduction of the presence 

of low rainfall values in the sets. We here anticipate 

that the forecast performances on the split-samples 

B–D in the analysis were found to be very close to 

those obtained when using the A split-sample pairs. 

For this reason and for brevity and clarity of presenta- 

tion, only the results referring to case A will be 

described in what follows. 

In the adaptive calibration no database of past 

significant observed events is supposed available, 

but only the most recently observed values, immedi- 

ately preceding the forecast instant. Thus, the set of 

data is extremely poor for generalisation purposes, 

but, on the other hand, the limited amount of data to 

be processed allows the re-calibration of the model 

on-line, at each time step, as soon as new observations 

become available. This adaptability enables the model 

parameters to adjust to the properties of an ongoing 

event, by capturing the characteristics of the current 

meteorological situation. 

For both calibration approaches, in correspondence 
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of each hourly time step belonging to the validation 

set, a rainfall forecast was issued for the subsequent 

1–6 h, using the most recent observations as input. 

The resulting forecasted rainfall values were 

processed as inputs to the rainfall–runoff transforma- 

tion model, thus providing the discharge forecast. 

 

3. ARMA models 

 

Most of the time-series techniques traditionally 

used for modelling water resources series fall within 

the framework of the ARMA class of linear stochastic 

processes. They are usually denoted as ARMA(p,q) 

models, where p and q are the auto-regressive and 

moving-average orders, respectively (Box and 

Jenkins, 1976; Brockwell and Davis, 1987; Bras 

and Rodriguez-Iturbe, 1994). They describe each 

observation of the time series as a weighted sum of 

p previous data, and the current as well as q previous 

values of a white noise process: 

xt = ф1(xt—1 — µx) + ф2(xt—2 — µx) 

+… + фp(xt—p — µx) + ht + θ1ht—1 

+θ2ht—2 + … + θqht—q + µx, (1) 

where xt is the investigated time series; ht, a white 

noise, i.e. a non-correlated, zero-mean random 

variable that is also not correlated with the past values 

of xt; ф1, …, фp and θ1, …, θp, the auto-regressive and 

moving-average parameters, respectively; and µx, the 

mean of the time series. 

Parameter estimation for ARMA models can be 

performed in several ways. We applied here an 

approximation in the spectral domain of the Gaussian 

maximum likelihood function, which was first 

proposed by Whittle (1953) for short-memory models. 

 
 ARMA model application 

The application of low-order ARMA processes to 

model short-term precipitation values is considered 

here, following the modelling framework proposed 

by Brath et al. (1988) and Burlando et al. (1993). 

The application of ARMA models requires the data 

to be stationary and this is often not the case for hourly 

rainfall observations, whose statistical properties may 

vary with the season. Nonetheless, the limited number 

of rainfall events in the observation period prevented 

us, in the split-sample calibration, from grouping the 

events in monthly periods, as it is usually done in 

hydrology to circumvent non-stationarity. In the 

adaptive calibration application, non-stationarity is 

accounted for by allowing the model parameters to 

vary with time since the calibration is performed 

solely on the progress of the current event. We 

preferred not to perform any preliminary transforma- 

tion of the data in order to make them as close to 

Gaussian as possible. In fact, Gaussian data are not 

required for the forecast application of ARMA 

models, since they provide the best linear prediction 

even in the non-Gaussian case (Brockwell and Davis, 

1987). 

The selection of the model orders, p and q, was 

driven by some results available in literature. 

Obeysekera et al. (1987) determined an equivalence 

between the correlation structure of an ARMA(1,1) 

model and some point process models, like the 

Poisson rectangular pulses and the Neyman–Scott 

white noise models (see Rodriguez-Iturbe et al., 

1984). On the other hand, the Neyman–Scott rectan- 

gular pulses model, which has proved to represent the 

stochastic structure of rainfall better (Rodriguez- 

Iturbe et al., 1987), has a correlation structure 

equivalent to that of an ARMA(2,2) process. 

In the adaptive calibration, the parameters are 

estimated in correspondence with each forecast 

instant, on the basis of the last values measured in 

real-time. The number of past observations to be 

used for each calibration was chosen on the basis of 

the results of a previous study (Brath et al. 1998). The 

estimation of the parameters was performed there 

with a number w of observations xt immediately 

preceding each forecast instant, with w varying from 

7 to 100, aiming at identifying the value of w that 

provides the best forecasting performances. The 

results showed that for increasing w, the efficiency 

of the forecast improved moderately for short lead- 

times (1–3 h), but a longer set of past data (more than 

3 days of previous hourly observations) provided a 

much better performance for lead-times longer than 

4 h. Thus, we set the moving window of past rainfall 

observations to be used in each adaptive calibration 

equal to the 100 last measured hourly observations 

(that is, w = 100). 
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4. Artificial neural networks 

 
As mentioned above, the rainfall generation 

mechanism is extremely difficult to identify and 

model: there is still much that is not understood 

regarding the small-scale behaviour of precipitation 

and the underlying physical laws. It is not easy to 

recognise all the existing complex, and typically non-

linear, relationships between the various aspects of 

the dynamical process (French et al., 1992; 

Kuligowski and Barros, 1998). 

To accommodate the inability of an ARMA-type 

model to account for these effects, non-linear 

statistical models have been proposed, such as the 

threshold model and the bilinear model, but their 

complexity often makes them unsuitable for 

operational applications (Chakraborty et al., 1992). 

In addition, such models still belong, like the 

ARMA type, to the model-driven approaches, requir- 

ing an identification of the kind of relation between 

the variables (model selection) and an estimation of 

the selected model parameters. From these considera- 

tions stems the interest in alternative non-linear fore- 

casters, belonging to the data-driven approaches, 

where no a priori relationship between known para- 

meters and observed values has to be hypothesised 

and no knowledge of the underlying process is 

needed. Both artificial neural network architectures 

and nearest-neighbour methods present these 

appealing characteristics. 

Artificial neural networks have been widely studied 

and applied to a variety of problems, including hydro- 

meteorological simulation and forecasting. Several 

studies have been dedicated to the prediction of 

river flows (at a time scale ranging from one year to 

one day) with no exogenous inputs, that is with only 

the use of past flow observations (e.g. Karunanithi et 

al., 1994). However, the large majority of the ANN 

hydrologic applications predict future flows based on 

the knowledge of previous rainfall depths (and other 

meteorological variables) along with past observed 

flows. The appeal of the use of ANN as black-box 

rainfall–runoff models lies mainly in their ability to 

reproduce the non-linear nature of the rainfall–runoff 

transformation, and encouraging results have been 

obtained in literature on both real and synthetic hydro- 

logic data (e.g. Hsu et al., 1995; Minns and Hall, 

1996; Shamseldin, 1997; Zealand et al., 1999). 

The use of ANN for rainfall forecasting has not been 

fully explored, yet. A pioneer work is the study by 

French et al. (1992), who applied a neural network to 

forecast 1 h ahead, two-dimensional rainfall fields on a 

regular grid. The forecast was based on synthetically 

generated rainfall grid values corresponding to the 

previous hourly period. Kuligowski and Barros (1998) 

generated a QPF of point precipitation accumulated 

over the following 6-h period using as inputs the ante- 

cedent rainfall depths measured in adjacent gauges and 

the radiosonde-based wind direction. Our interest is 

mainly focused on the hydrological use of rainfall fore- 

casts: the implemented scheme provides a spatially 

averaged rainfall forecast for all the lead-times from 1 

to 6 h, directly usable as input to the rainfall–runoff 

lumped model, and the only available information 

used are past rainfall observations. 

Neural networks distribute computations to 

relatively simple processing units called neurons, 

grouped in layers and densely interconnected. Three 

different layer types can be distinguished: input layer, 

connecting the input information (and not carrying out 

any computation), one or more hidden layers, acting 

as intermediate computational layers between input 

and output, and an output layer, producing the final 

output. In correspondence to each computational node 

J, each entering value IJi is multiplied by a connec- 

tion weight wij . Such products are then all summed 

with a neuron-specific parameter, called bias bj , 

used to scale the sum of products into a useful 

range. The computational node finally applies a non- 

linear activation function ( f ), often a sigmoid, to the 

above sum producing the node output OJ . 

Neural networks are trained (calibrated) with a set 

of observed input and output (called target to be 

distinguished from the network final output) data 

pairs, the training data set, which is processed repeat- 

edly, changing the values of the parameters until they 

converge to values such that each input vector 

produces output values as close as possible to the 

desired target vectors. Several variants of the popular 

and extensively tested BackPropagation (BP) training 

algorithm were tested in the present work. The 

Levenberg–Marquardt algorithm, a quasi-Newton 

method that proved to be the quickest and less easily 

trapped in local minima among all the tested training 

techniques, was finally chosen. 

The comparison of the performance of networks 
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Fig. 1. (a) Feed-forward recursive network. Pt is the precipitation process; wh , wo are the connection weights towards the hidden and output 
layers, respectively, and bj are the node biases. (b) Feed-forward direct multi-step network. Pt is the precipitation process; wh , wo are the 

connection weights towards the hidden and output layers, respectively, and bj are the node biases. 
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allowing different feed-forward and feedback connec- 

tions between the nodes led to the choice of a classic 

multi-layer feed-forward network, where the informa- 

tion flows only in one direction, from the input 

through the hidden up to the output layer. Networks 

allowing other types of connections between the 

layers (recurrent and cascade-forward networks) 

were also tested: they provided comparable results, 

but longer time and more random initialisations 

were needed for training. 

As far as the number of hidden layers is concerned, 

there is no theory yet to tell how many hidden layers 

are needed. It has been proved that only one layer of 

hidden units “suffices to approximate any function 
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( )=   

with finitely many discontinuities to arbitrary preci- 

sion”, provided the activation functions of the hidden 

units are non-linear (the “Universal Approximation 

Theorem”, see Hornik et al., 1989). The hidden 

nodes also allow taking into account the presence of 

non-stationarities in the data, such as trends and 

seasonal variations (Maier and Dandy, 1996). 

Obviously, the introduction of additional hidden 

layers allows the fit of a larger variety of target func- 

tions. On the other hand, the use of more than one 

hidden layer substantially increases the number of 

parameters to be estimated and the training time, 

and it exacerbates the problem of local minima, 

increasing the need for several random initialisations. 

Moreover, the addition of hidden layers often fails to 

provide noticeable improvement in the out-of-training 

forecasting application (see, for example, Zealand et 

al., 1999), as confirmed also in our case study 

applications. 

The use of an ANN for forecasting time series 

implies that the input nodes are connected to a number 

of past observed values supposed sufficient to identify 

the process at future time steps. For forecasting 

several time steps ahead (multi-step ahead predic- 

tion), two methods have been considered. The first 

is the recursive multi-step method: the network has 

only one output node, forecasting a single step ahead, 

and the network is applied recursively, using the 

previous predictions as inputs for the subsequent 

forecasts (see Fig. 1a). This forecasting technique is 

similar to the one used by the ARMA-type models. 

The second method (direct multi-step) exploits the 

capability of a neural network to provide a multiple 

output, when several nodes are included in the output 

layer, and each output node represents one time step to 

be forecasted (see Fig. 1b). In our preliminary tests, 

the recursive multi-step method provided very good 

results for lead-time equal to one time step, but there 

was a drastic deterioration when the lead-time 

increased, as could be expected, because in the recur- 

sive methodology the forecast errors are propagated 

into subsequent forecasts. Given the importance of 

good performance in correspondence with the longer 

lead-times, the direct multi-step method was chosen. 

 
 ANN application 

The most crucial disadvantage of ANN models is 

that the optimal network architecture and properties 

are highly problem-dependent and no definitive estab- 

lished methodology exists to deal with the neural 

network modelling problem. As described above, 

preliminary forecast analyses were performed on a 

few storm events, for choosing, on the analysed time 

series, different architectures and properties of the 

networks. 

From all the above considerations it was decided to 

extensively test ANN architectures consisting of a 

multi-layer feed-forward network with only one hidden 

layer. The network is trained with the Levenberg– 

Marquardt algorithm and the multi-step approach is 

the direct multi-step method. The optimal complexity 

of the model, that is the number of input and hidden 

nodes, will be determined, as it is usually done, by a 

trial-and-error approach. 

 

 
5. K-NN method 

 

The K-nearest-neighbour method has its origins as a 

non-parametric statistical pattern recognition proce- 

dure, aiming at distinguishing between different 

patterns according to chosen criteria. Among the 

various non-parametric techniques, in the sense that 

no theoretical or analytical relation is known or 

assumed between the inputs and the outputs, it is the 

most intuitive, but nevertheless possesses powerful 

statistical properties. Yakowitz (1987) and Karlsson 

and Yakowitz (1987a,b) did considerable work in 

extending the K-NN method to time-series and fore- 

casting problems, obtaining satisfactory results and 

constructing a robust theoretical base for the K-NN 

method. The intuitiveness of the approach and the 

powerful theoretical basis have made the method 

attractive to forecasters, especially in the hydrologic 

field, where the method found successful applications 

(Karlsson and Yakowitz, 1987a,b; Galeati, 1990; 

Kember and Flower, 1993; Todini, 1999). 

The prediction of a time series is based on a local 

approximation, making use of only the nearby obser- 

vations.   For   each   forecast   instant   t,   let   x̄
d
  t 

xt, …, xt—d+1 be a feature vector of past records. A 
feature vector is a vector that summarises the whole 

past history in a smaller-dimension vector of observa- 

tions supposed to contain most of the information 

relevant to the forecast. The method assumes that 
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the probability distribution of the random variable 

conditioned on the entire past xt+1/xt, xt—1, … , is 
the same as that of the random variable conditioned 

on only the d past observations   xt+1/x̄
d
  t   . 

It was proved that, even if x̄ d  t  does not satisfy the 
above “history summarisation” properties, the K-NN 

forecaster will be asymptotically optimal among all 

the  forecasters  defined  on  the  feature  vector  x̄
d
  t . 

That is, under fairly general circumstances, conver- 

gence to the optimal forecaster is assured as the 

historical data set increases (Karlsson and Yakowitz, 

1987b). Let us indicate the expectation of the next 

value as xˆt+1, conditioned on the current feature 

vector x̄ d(t), that is, 

x̂t+1 = E[xt+1|x̄
d
(t)]. (2) 

To estimate xˆt+1, the K-NN method imposes a metric, 
denoted by ǁ·ǁ, on the feature vector x̄

d
  t   to find the 

set of K past nearest neighbours of x̄
d
  t , i.e. the K d- 

dimensional vectors of past observations: x̄
d
  tj  , J 

1, …, K, which minimise ǁx̄d
  t  — x̄d

  tj  ǁ. 
The most intuitive and widely used metric to 

identify neighbours is the Euclidean norm, which, 

for a d-dimensional vector Z̄ d  
= (z1, z2, …, zd), is 

subsequent to these K historical nearest neighbours. 

It may be noticed that the K-NN approach does not 

require the selection of a class of models and the 

estimation of the model parameters, so that the 

identification of a specific form of the input/output 

relationship is not needed. 

5.1. K-NN method application 

The nature of the nearest-neighbour method makes an 

adaptive calibration approach completely meaningless, 

because the approach is based on the presence of an 

extended database. In fact, in addition to being data- 

driven, it is a method that does not detect any input/ 

output mapping function, not even a posteriori (whereas 

the ANNs do), and it has, therefore, no extrapolation 

ability when presented with an unfamiliar input vector. 

As a consequence, only the split-sample application was 

performed. 

A trial-and-error procedure was implemented for 

finding the number of nearest neighbours, K, and the 

dimension of the feature vector d (corresponding to 

the number of past rainfall data considered represen- 

tative for the forecast), providing the best performing 

forecasts. As Karlsson and Yakowitz (1987a) empha- 

ǁZd ǁ = 

d 

 

i=1 

1/2 

2 
i . (3) 

sise, K and d seem, and indeed are, parameters but the 
method itself is nevertheless non-parametric. In fact, 

K and d do not imply a model for xˆt+L : the purpose of 

The forecast is then obtained by averaging the 

temporal evolution of the nearest neighbours, 

assumed to be similar to the evolution of the current 

situation, that is, 

1  XK 

their search “is pragmatic; it is to make the Nearest- 

Neighbour forecaster as accurate as possible for a 

given database”. 

 
6. Analysis and comparison of rainfall forecasting 

results 
x̂t+1  =  

K
 

j=1 

xtj +1. (4) 
 

The performances of the considered time-series 

The generalisation to higher lead-times L is straight- 

forward: 

1  XK 

methods (ARMA models, ANN and K-NN method) 

are first of all analysed and compared assessing the 

respective ability to forecast the spatially averaged 
rainfall depths belonging to the validation set storms. 

x̂t+L  =  
K

  

j=1 

xtj +L. (5) 
The issued rainfall forecasts will be successively 

routed through the conceptual rainfall–runoff trans- 

Thus, in our case, the K-NN algorithm looks through 

all consecutive d-dimensional vectors in the entire 

historical rainfall depths database and locates K of 

these d-ples, which are closest to the vector of the d 

most recent rainfalls. The prediction of the next rain- 

fall is then taken to be the average of the rainfall 

formation model and the performances of the result- 

ing river flow forecasts will be analysed and compared 

in the next session. 

The performances of the various forecasting techni- 

ques are investigated through a trial-and-error process. 

The rainfall forecasting results are extremely difficult to 

z 

! 
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Fig. 2. Mean correlation coefficients of the one to six steps ahead rainfall forecasts issued: (a) by ANN architectures with varying number of 

input nodes, and (b) by nearest-neighbour implementations with varying number of neighbours. 

 

analyse, and a variety of quantitative measures (root 

mean square error, mean absolute error, coefficient of 

persistence, efficiency coefficient, correlation coeffi- 

cient, index of agreement) were considered for synthe- 

sising the effectiveness of the performances over all the 

lead-times, so to make a comparison possible. Different 

methods provided the best results for different forecast 

performance measures and for different lead-times, so 

that a performance classification could not be assessed 

unequivocally. 

Among the considered measures, the correlation 

coefficient (CC) was chosen, following other rainfall 

forecasting studies (French et al., 1992; Kuligowski 

and Barros, 1998), as the most representative for 

assessing rainfall forecast performance. The correla- 

tion coefficient is given by the covariance of the fore- 

casts and observations divided by the product of the 

respective standard deviations. It ranges from —1.0 to 
1.0, with higher values indicating better agreement. 

 
 Description of the split-sample and adaptive 

applications 

 ARMA models: trial-and-error processes 

In the split-sample calibration, low-order ARMA 

models were implemented, both purely auto-regressive 

and with a moving-average component, provided that 

the sum of the auto-regressive and moving-average 

orders, p + q, is equal to or less than 6. All the tested 
ARMA models provided almost analogous perfor- 
mances (mean CC 0.291–0.293). 

In the adaptive calibration, the tested ARMA 

models had auto-regressive orders of 1 and 2 and 

moving-average orders less or equal to 3. The trend 
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Table 1 

Correlation coefficients of rainfall predictions 
 

Time-series analysis technique Optimal model configuration Lead-time (h)    Mean CC 

 1 2 3 4 5 6  

ANN split-sample NI = 18, NH = 2 0.689 0.511 0.407 0.358 0.331 0.327 0.437 

ARMA split-sample Almost all equivalent 0.686 0.430 0.276 0.173 0.114 0.077 0.293 

Nearest Neighbours K = 70, d = 2 0.709 0.493 0.336 0.239 0.174 0.110 0.344 

ANN adaptive NI = 3, NH = 3 0.527 0.307 0.196 0.171 0.169 0.162 0.255 

ARMA adaptive p = 1, q = 0 0.744 0.472 0.283 0.134 0.060 0.003 0.281 

 

of the obtained performances, for all the ARMA 

models, is characterised by relatively good perfor- 

mance for lead-time of 1 h, followed by a collapse 

in correspondence of longer time horizons. The over- 

all best results are provided by ARMA models with 

parsimonious configurations, indicating ARMA(1,0) 

as the best performing model (mean CC = 0.281). 

ANN: trial-and-error processes 

In the split-sample application, architectures with a 

number of input nodes NI ranging from 2 to 24 were 

tested. For each input layer dimension, the number of 

hidden nodes (NH) was progressively increased from 

2 to 8 nodes. A deterioration of the forecasting per- 

formance on the validation set, indicating over-fitting, 

was always shown for moderate dimensions of the 

hidden layer, the best results corresponding to NH 

between 2 and 6. The performance of ANN architec- 

tures, considering all the lead-times, improved as the 

number of input nodes (NI) increased, with modest 

additional gain for more than 15–18 nodes (see 

Fig. 2a). 

The networks tested in the adaptive calibration of 

were extremely parsimonious (both NI and NH 

ranging from 2 to 5), because the limited number of 

training samples (here chosen corresponding to 100 

past observations for a fair comparison with the 

ARMA adaptive approach) would make a complex 

network easily subject to over-fitting. The optimal net- 

work complexity for adaptively calibrated neural 

networks seems to correspond to numbers of input 

and hidden nodes, NI and NH, equal to 3. 

 

Nearest-neighbours: trial-and-error process 

A trial-and-error procedure was implemented for a 

number of nearest neighbours, K, ranging from 5 to 

100 and a dimension of the feature vector, d, ranging 

from 2 to 12. The improvement of the performance 

with an increasing number of nearest neighbours is 

less noticeable for more than 20 neighbours and 

there is no marginal improvement in the overall 

performance when increasing K beyond 70 (see Fig. 

2b). Small values (from 2 to 4) of the feature dimen- 

sion d gave the most satisfactory results for each given 

number of neighbour vectors K. 

 
Overall comparison of rainfall forecasts 

A direct comparison of all the implemented 

methodologies is presented here, so as to highlight 

the relative strengths and limitations. Table 1 shows 

the correlation coefficients of the rainfall predictions 

provided by each time-series analysis technique (with 

the modelling configurations identified in the trial- 

and-error processes), both for different lead-times 

and for the mean over all the lead-times. The table 

ranks ANNs above the nearest-neighbour method and 

this latter above the ARMA models, on our precipita- 

tion data. Such results seem to indicate the appropri- 

ateness of non-linear approaches when modelling 

rainfall time-series. 

With regard to the ARMA models, the adaptive 

calibration application provides very good performance 

for very short lead-times, while the split-sample 

approach achieves better results for lead-times longer 

than 3 h. This is consistent with the results obtained by 

Burlando et al. (1993), who found a superiority of the 

adaptive calibration method tested for predictions 1 and 

2 h  ahead. 

The ANN adaptive calibration application proves to 

be unreliable for short lead-times and especially 

inadequate for reproducing low rainfall, even if it is 

satisfactorily stable for lead-times longer than 3 h. For 

a better result on short lead-times, we should probably 
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Table 2 

Mean correlation coefficients of predictions for different rainfall ranges 
 

 Rainfall intensity range  

Low rainfall (<0.1 mm) Medium rainfall (0.1–1 mm) High rainfall (>1 mm) 

ANN split-sample 0.203 0.257 0.178 

ARMA split-sample 0.216 0.180 —0.001 

Nearest neighbours 0.268 0.121 0.119 

ANN adaptive 0.075 0.115 0.028 

ARMA adaptive 0.132 0.205 0.008 

 

have resorted to the recursive multi-step method, but 

at the expense of the performance for several steps 

ahead. The ANN corresponding to the split-sample 

calibration gives the overall best results for lead- 

times longer than 2 h, even if this kind of structure 

slightly penalises the 1-h ahead forecast. 

Table 2 presents the correlation coefficients 

obtained for different rainfall intensity ranges, to get 

an insight into the type of rainfall for which each 

method performs better. Both the nearest-neighbour 

and ARMA split-sample models provide a good fit of 

low-intensity precipitation, but the ANN with split- 

sample calibration allows the best results for medium 

and high rainfall values. 

The forecasts issued when the calibration is of the 

split-sample type present, overall, smaller deviations 

from the observed values. Nevertheless, Table 2 high- 

lights the difficulties experienced by all the methods 

in reproducing high-intensity rainfall. The analysed 

techniques do not seem to properly reproduce high 

precipitation values. This is probably due to the fact 

that they are influenced by the majority of low-rainfall 

observations in the calibration sets. Analysing the 

issued forecasts, it may be noticed that the adaptive 

calibrations often issue unreliable forecasts in 

correspondence with abrupt changes in the rainfall 

intensities; on the other hand, the forecasts obtained 

with the split-sample approaches tend, when the lead- 

time increases, towards the average of the calibration 

data, often underestimating the values that follow the 

high-intensity occurrences. It may be inferred that this 

is the same reason that causes the presence of an 

apparent upper limit in the split-sample forecasts. 

If a different goodness-of-fit criterion had been 

chosen in the trial-and-error processes, for instance 

maximising the fit on the highest rainfall values 

alone, better results probably would have been 

obtained when predicting extreme rainfall. However, 

such a choice would provide poor performance in the 

prediction of events that, although not extreme, are 

relevant in terms of vulnerability of flood-prone areas. 

Considering all the lead-times and all the rainfall 

categories, the ANN with split-sample calibration 

seems the most adequate among all the considered 

approaches, at least in reference to our case study. 

In addition, it should be underlined that almost all 

the computational effort spent for the implementation 

of the ANN split-sample application is concentrated 

in the training phase, while the issue of the forecasts 

with the trained network is practically instantaneous, 

thus making this approach very appealing in a real- 

time forecasting framework. 

 

 
7. Rainfall–runoff transformation: analysis and 

comparison of discharge forecasts 

 

 Hydrologic model description 

 

The deterministic model used for simulating the rain- 

fall–runoff transformation is a conceptual continuous 

simulation model called ADM (Franchini, 1996), 

which is based on the concept of probability distributed 

soil moisture storage capacity. The catchment is 

assumed to be composed of an infinite number of 

elementary areas (each one with a different soil moisture 

content and a different soil moisture capacity) and the 

proportion of elementary areas that are saturated is 

described by a distribution function: the total surface 

runoff is the spatial integral of the infinitesimal contri- 

bution deriving from the saturated elementary areas. 

The model is divided into two main blocks: the first 

represents the water balance at soil level, while the 

second represents the transfer of runoff production at 
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the basin outlet. The soil, in turn, is divided into two 

zones: the upper zone produces surface and subsur- 

face runoff, having as inputs precipitation and poten- 

tial evapo-transpiration, while the lower zone (whose 

input from the first one is the percolation flow) 

produces base runoff. The transfer of these compo- 

nents to the outlet section takes place in two distinct 

stages: the first represents the flow along the hill- 

slopes towards the channel network, while the second, 

the flow along the channel network towards the basin 

outlet. The 11 parameters of the ADM model were 

accurately calibrated with the Shuffled Complex 

casting theory, is the persistent method, which equals 

the future rainfall intensity, over all the investigated 

lead-times, to the last measured value, 

xˆt+L = xt,        6L. (6) 

The last investigated heuristic approach, somehow 

similar to the persistent method, consists in extrapo- 

lating future values setting the intensity for each given 

lead-time L equal to the mean intensity measured over 

the last L observations, that is, 

L 

xt—i+1 

Evolution global optimisation algorithm (Duan et 

al., 1992). The conceptual model has been separately 
x̂t+L  = 

i=1 

L 
. (7) 

parameterised off-line (fixed calibration) so that its 

parameters do not change during the forecasting 

period. Joint optimisation of the rainfall–runoff 

model coupled with the rainfall forecasters would, 

of course, be possible, but this might cause, owing 

to compensation effects, undesirable biases in the 

calibration of the parameters of the rainfall–runoff 

model (and possibly a departure from their physical 

meaning). 

 
 Standards of reference: heuristic rainfall 

predictive approaches 

To evaluate the performances of the analysed time- 

series forecasting methods when used for providing 

the inputs to the rainfall–runoff transformation model, 

the resulting discharges will be compared with those 

obtained with some predictive benchmarks, consisting 

of rainfall forecasting approaches of a purely heuristic 

nature. Three predictive procedures have been consid- 

ered among the possible alternatives that a hydrologi- 

cal practitioner may envisage in case sophisticated 

modelling tools are not available and in case the 

only information at his/her disposal are the most 

recent rainfall observations. 

This last predictive scheme will be denoted as the 

modified persistent method. 

 Analysis and comparison of flow forecasting 

performances 

The performance of the discharge forecasts attain- 

able using the QPF provided by the different rainfall 

predictive models was evaluated by computing the 

corresponding coefficient of efficiency, which is 

widely recognised as one of the most suitable good- 

ness-of-fit measures for runoff. For the analysis of 

discharge performance results, the discharge series 

chosen as a reference was not the series of observed 

discharges, but the hourly discharges simulated by the 

conceptual model when using as inputs the observed 

precipitation (“true” discharges). This scenario was 

considered in order to be able to evaluate the improve- 

ment obtainable by the rainfall forecasting module 

alone, independently of the effects of the simulation 

errors induced by possible residual inadequacies of 

the hydrologic model. 

The coefficient of efficiency for each lead-time L is 

given by: .
(Qt+L  — Q̂ 

t+L)
2
 

 
 

 

 
Probably, the most widespread approach when 

using a rainfall–runoff transformation model in a 
EL = 1 — 

¯ 2 L = 1, …, 6 (8) 
real-time framework is to assume that the future rain- 
fall will be null (null rainfall). It is an optimistic 

hypothesis, assuming that the forecast is issued at 

the end of the event, whereas, especially in watersheds 

with short response time, a forecast is needed earlier 

in the storm progress. 

A second term of comparison, widely used in fore- 

where Q̂ 
t  is the discharge at time t forecasted using as 

input the predicted rainfall values; Qt, the value of the 
corresponding “true” discharge (known rainfall); and 

Q̄ ,  the  mean  of  the  Qt  series.  The  summations  are 

extended to all the issued forecasts, that is, to all the 

forecast instants t belonging to all the validation 

events. 

t+L 
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Fig. 3. Efficiency coefficients of the river flows corresponding to the different rainfall forecasting procedures: ARMA models with split-sample 

and adaptive calibration; ANN with split-sample and adaptive calibrations; and nearest-neighbour method. The heuristic approaches: null 

rainfall, persistent rainfall method and persistent modified method. 
 

Fig. 3 shows the performances, in terms of 

efficiency coefficient, of the coupled rainfall–runoff 

forecasting schemes obtained with all the considered 

rainfall forecasting procedures. It may be observed 

that the hydrological processes taking place in the 

rainfall–runoff transformation tend to level out all 

the rainfall forecasts corresponding to very short 

lead-times and it dampens out most of the variability 

between the different methods highlighted in the 

analysis of the rainfall depths described in the 

previous section. As a consequence, the good 

performance of the ARMA adaptive calibration 

approach for 1-h lead-time becomes unnoticeable, 

whereas the relevant deterioration with increasing 

lead-time confirms how the method is less 

appropriate than the three split-sample calibration 

methods. 

Moreover, the response time of the watershed shifts 

the poor results provided by the adaptive calibration 

of ANN from the low to the large lead-times. The 

unsatisfactory results of the ANN with adaptive 

calibration is probably due to the strong limitation 

of the forecasting ability of ANN when trained on 

inadequate data sets, as the records of low-intensity 

rainfall immediately preceding the arrival of the 

highest precipitation intensities certainly are. As was 

expected, the null rainfall hypothesis proves to be 

unrealistic, since it may strongly underestimate the 

rainfall volumes, whereas the persistent methods 

(both in the traditional formulation and modified) 

provide an improvement with respect to the null 

rainfall approach. 

The ARMA model with adaptive calibration shows 

a relevant deterioration with increasing lead-time, as 

could be expected, given the poor performance of the 

rainfall forecasts obtained using this approach in 

correspondence to longer lead-times. The discharges 

simulated with the ARMA split-sample rainfall 

predictions appear slightly closer to the reference 

discharges in comparison with the results obtained 

with the nearest-neighbours scheme, whilst the perfor- 

mance of the rainfall forecasts appeared superior for 

the nearest-neighbour method. It may be hypothesised 

that this is due to the non-linear and threshold effects 

characterising the rainfall–runoff transformation 

modelling. 
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Fig. 4. Example of rainfall and runoff observations and forecasts during the event of 22 February 1995: observed precipitation (past, black bars; 

future, white bars), observed discharge (past, solid line; future, dotted line) and 1 to 6 h ahead predictions issued by ANN, nearest-neighbour 

and ARMA methods with split-sample calibration. 

 

Overall, the split-sample calibration techniques 

seem to be preferable with respect to the adaptive 

calibrations. The reason lies probably in the 

“experience” they learned from past samples, which 

allows them to better reproduce the rainfall evolution 

mechanism for all the lead-times. An example of the 

rainfall and runoff forecasts obtained with the split- 

sample calibrations in the course of a typical event, is 

shown in Fig. 4. 

The split-sample calibrated ANNs produced overall 

the highest efficiency values. Therefore, the coupled 

rainfall–runoff forecasting comparison confirms, with 

regard to our case study, the superiority of ANN 

already shown in the analysis of the performances of 

rainfall forecasts. In order to improve the performance 

when forecasting the rainfall peaks, a larger number 

of heavy precipitation events (as might be found in 

longer observation periods) would be needed in the 

training set, thus exposing the neural network to a 

larger number of extreme events in the calibration 

of the model. 

8. Conclusions 

 
This paper reports the results of a comparison of 

time-series analysis techniques for short-term rainfall 

forecasting to be used as input in a deterministic 

rainfall–runoff model for real-time flash-flood 

forecasting. 

Different structures of ARMA models, ANNs and 

nearest-neighbour approaches were applied for fore- 

casting storm rainfalls that occurred in the Sieve River 

basin, Italy, in the period 1992–1996. The forecast 

performances of each technique were evaluated by 

comparing observed and predicted rainfall data and 

also by comparing the river discharge predictions 

provided by a conceptual rainfall–runoff model 

using observed and predicted rainfall as input. 

Different approaches for calibrating the rainfall 

predictors were applied. The calibration procedures 

making use of an extended training set of past rainfall 

data provided the best performances, especially for 

longer forecast time horizons, with a superiority of 
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the predictors based on ANN architectures, within 

the analysed range of parameters and model 

structures. The dampening effect induced by the 

rainfall–runoff transformation processes tends to 

level the per- formances of the different methods, so 

that, when considering the predicted runoff, the 

satisfactory fit that some of the methods allow for 

very short-term rainfall forecasts is of little worth. 

Overall, the study indicates that the considered 

time-series analysis techniques provide an improve- 

ment in the flood forecasting accuracy with respect 

to the use of intuitive, heuristic rainfall prediction 

approaches, even if the rainfall forecasting perfor- 

mance measures indicate only a weak to moderate 

relationship between forecasted and observed 

values. This is due to the fact that past rainfall 

observations alone are not sufficient to predict 

future precipitation accurately, not even for short 

time periods. 

The results shows that the use of time-series 

analysis techniques for precipitation forecasting 

may allow an extension of the lead-time up to which 

a reliable flood forecast may be issued, providing a 

quick prediction based on past values solely and 

directly in the format required by the rainfall–runoff 

transformation model. On the other hand, strong 

limitations to a time-series analysis approach are 

due to the lack of information needed for a reliable 

prediction. More substantial improvement should 

certainly be pursued through numerical weather 

prediction models, once they are able to provide 

timely rainfall forecasts at a temporal and spatial 

scale compatible with the requirements of flood 

fore- casting in small and medium-sized basins. 
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